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Abstract. In this paper, we report on the development of a large-scale Finnish Inter-
net parsebank, currently consisting of 1.5 billion tokens in 116 million sentences.
The data is fully morphologically and syntactically analyzed and it has been used
to extract flat and syntactic n-gram collections, as well as verb-argument and noun-
argument n-grams. Additionally, distributional vector space representations of the
words are induced using the word2vec method. All n-gram collections as well as
the vector space models are made available under an open license.
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Introduction

Large-scale tagged text corpora and n-gram collections have been the traditional
workhorse of corpus linguistics as well as the source of data for many natural language
processing applications. The Internet has become an inexhaustible source of text ma-
terial covering an inclusive number of languages and topics. The high coverage of the
Internet makes it an appealing source for a corpus development, and consequently large-
scale projects, such as WaCKy [1], have been established to build web corpora. With the
recent progress in syntactic parsing algorithms, both in terms of speed and accuracy, it
has become feasible to enrich the large corpora with a full syntactic analysis, building
parsebanks.

In this paper, we report on the development of a large-scale Finnish Internet parse-
bank, currently consisting of 1.5 billion tokens in 116 million sentences. The text of the
corpus is gathered from the plain text webpage data made available by the Common-
Crawl2 Internet crawl project using language recognition to detect Finnish text. The text
is further de-duplicated on the document level and filtered to contain a “clean” narrative
with sentence structure. Every sentence in the collection is then fully morphologically
and syntactically analyzed using the parsing pipeline of Haverinen et al. [2].

The syntactic analysis follows the Stanford Dependencies (SD) scheme [3] with mi-
nor modifications to accommodate Finnish-specific phenomena. In addition to the ba-
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sic parse trees, the parsebank also contains the additional dependencies defined in the
non-basic (enhanced) variants of the SD scheme. These encode non-tree relations —
most importantly conjunct propagation and external subjects — resulting in dependency
graphs rather than trees (see Figure 1). The enhanced analyses are produced using the
machine learning method of Nyblom et al. [4].
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Figure 1. Conjunct propagation as defined in the non-basic variants of the SD scheme. The additional depen-
dencies are marked with dashed lines. The example can be translated as The fast and friendly service received
praise and was noticed in the whole area.

1. Data Preparation

1.1. Data Source

The typical starting point for gathering Internet data would be to launch a web crawl
using a tool dedicated to gathering text-rich pages, such as SpiderLing3, and restrict the
crawl to the national domain .fi. Crawling Internet data is a time-consuming task with
many complexities which are not immediately apparent, and the restriction to the national
top-level domain naturally prevents a number of relevant domains from being reached.
As an alternative approach, we therefore use the CommonCrawl4 dataset containing 6.6
billion web pages. The crawl data is available as an Amazon Public dataset and can be
accessed as Hadoop sequence files from the Amazon Elastic Compute Cloud and the
Amazon Elastic MapReduce cluster. The crawl data is available as both plain text and
HTML. The CommonCrawl data is a general-purpose Internet crawl and only a tiny
fraction of it is of interest to us: Finnish pages with a sufficient proportion of text suitable
for parsing.

The plain text is stored in the Hadoop sequence files as key–value pairs, where the
key is an URL and the value is the content downloaded from the URL as a raw text.
For every available plain text file, we iterated through each key–value pair and detected
its language based on the first 400 bytes using the Chromium compact language detec-
tor package5, preserving only Finnish pages for further processing. The choice of the
language detection component was primarily motivated by its speed, since the language
detection was by far the most time consuming step when gathering the initial data from
CommonCrawl.

The plain text data contains catalogs, lists, menus, and the like, mixed together with
the actual text of interest, and is thus not suitable for parsing as is. To gather clean text
from the data, it is filtered line-wise to discard the lines of text which are not a part of any
sentence. For each line we calculated the following features: The number of tokens, the

3http://nlp.fi.muni.cz/trac/spiderling
4http://commoncrawl.org, the 2012 version was available when the processing was initiated
5https://code.google.com/p/chromium-compact-language-detector
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number of tokens recognized as Finnish by the OMorFi Finnish morphological analyzer
[5,6], the number of special character tokens (non-alphanumeric characters), the number
of numerical tokens, whether the line begins with an uppercase letter and whether it ends
with a sentence-terminal character, such as a comma or an exclamation mark.

On a small test sample of the raw text, we manually established the parameters such
that for a line to be preserved, it must be over 5 tokens long, have over 60% of its tokens
recognized as Finnish, cannot contain more than 20% of numerical tokens and more than
30% of special character tokens.

The plain text lines do not necessarily follow the sentence boundaries and a single
sentence can be spread across multiple lines as a part of a larger text block possibly
consisting of many sentences. Thus the lines within a single block (i.e. all lines until an
empty or removed line is reached) are either accepted as separate text blocks or alterna-
tively concatenated into bigger text blocks if found relevant due to sentence boundaries.
If the line starts with an uppercase word recognized as Finnish by OMorFi and ends in
a sentence-terminal character, it was determined to consist of complete sentences and
no concatenation was needed. Otherwise, the line was considered to be a potential part
of a bigger text block and concatenated with the surrounding lines to form a complete
text block with continuous sentences. After concatenation, the tokens still not forming
complete sentences were stripped from the start and the end of the new block. All clean
text blocks extracted from a single document were then saved together with their URL
to preserve the source of a particular part of the corpus and to maintain the document
structure.

Internet data contains a significant proportion of duplicate documents. To remove
these duplicates, a hash was created for each unique sentence in the data and documents
found to contain more than 90% of previously seen sentences were discarded.

The final text corpus after post-processing and de-duplication contains 1.5 billion
tokens in 116 million sentences from approximately 4 million URLs. These sentences
were subsequently parsed using the parsing pipeline described in the following section.

1.2. Dependency Parsing Pipeline

The clean text is parsed using the dependency parsing pipeline6 of Haverinen et al. [2].
This pipeline consists of a statistical sentence splitter and tokenizer from the OpenNLP7

toolset, followed by the OMorFi8 morphological analyzer [5,6], the HunPOS9 tagger [7],
and finally the mate-tools10 graph-based dependency parser [8]. All of these tools have
been trained on the Turku Dependency Treebank [2]. The performance of the pipeline,
measured on the TDT test set (with a gold standard sentence splitting and tokenization)
is shown in Table 1. The best labeled attachment score (LAS) reported in the literature
for the TDT test set is 83% using the beam-searched transition-based parser of Bohnet et
al. [9], which also carries out the POS and morphological tagging jointly with parsing.
The improvement of roughly 2pp in terms of LAS is however offset by a marked, nearly
10-fold decrease in the parsing speed, especially in the early experimental version of

6http://turkunlp.github.io/Finnish-dep-parser
7https://opennlp.apache.org/
8https://code.google.com/p/omorfi
9https://code.google.com/p/hunpos
10https://code.google.com/p/mate-tools
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the parser available at the time the parsing run was executed, and we therefore used the
faster, if somewhat less accurate parser.

Table 1. The performance of the parsing pipeline as measured on the TDT test set (Table adapted from [2]).

Metric Measured Accuracy [%]

Labeled attachment score (LAS) Governor + Dependency type 81.01
Unlabeled attachment score (UAS) Governor 84.97
Dependency type accuracy Dependency type 89.53
Lemmatization accuracy Lemma 91.8
Main part-of-speech tagging POS 94.4
Fine-grained tagging All morphological tags 89.8
Full morphology Lemma + all morphological tags 87.3

1.3. Predicting Additional Dependencies

On top of the parse trees, the machine learning-based method of Nyblom et al. [4] is
used to enrich the syntactic analysis by including the additional dependencies defined
in the non-basic variants of the SD scheme [10]. These enhanced analyses include the
propagation of coordinated elements, the explicit representation of external subjects in
verbal complement structures and encoding the secondary syntactic functions of rela-
tivizers. Example of these extra dependencies are shown in Figures 1 and 2. The addi-
tional dependencies are predicted using the base parse tree as the source of features and
the overall prediction performance is 93.1% in terms of F-score.
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Figure 2. The secondary syntactic function of relativizer and external subject, as defined in the non-basic
variants of the SD scheme. The additional dependencies are marked with dashed lines. The example can be
translated as The man who started to speak was my cousin.

2. Flat and Syntactic N-grams

The corpus is made available in the form of flat and syntactic n-grams, in the same
format in which Google recently published their collection of English flat and syntactic
n-gram data derived from the Google Books corpus [11,12]. For the flat n-grams, we
make available all 5-grams, i.e. fragments of five tokens together with their lemmas,
part-of-speech and morphological tags. Each n-gram is associated with its count in the
underlying corpus.

For syntactic n-grams, the context is defined in terms of dependency paths rather
than the standard linear context, meaning that the syntactic n-grams collect together
words which are close to each other in the syntactic representation, but not necessarily
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in the underlying text. Following the same format as in the English syntactic n-gram
collection [12], each syntactic n-gram is defined to be a single rooted connected subtree
extracted from the full parse tree. Possible subtree configurations comprising from one
(arc) to four (quadarc) dependencies are shown in Figure 3, when arcs, biarcs and triarcs
include all possible configurations, but quadarcs are limited to a single structure, where
the n-gram root has two dependents, either of which have one dependent as well. In addi-
tion to these, the n-gram collection also defines nodes, which are single words associated
with the incoming dependency type, but not a head token.

B1

B2

T1

T2

T3

T4

Q1

Figure 3. All possible configurations of biarcs (B) and triarcs (T) and the only quadarc structure (Q) included,
without the extra functional dependents.

Instead of using the basic parse tree as the source structure, we use the richer syntac-
tic representation defined in the non-basic variants of the SD scheme resulting in parse
graphs rather than trees (as explained in Section 1.3). These additional dependencies are
treated in the same manner as the base dependencies when possible (resulting in one
of the configurations shown in Figure 3), but since the underlying structure is a depen-
dency graph, all extracted n-gram structures may not be trees. Thus, the possible n-gram
configurations are expanded to also include non-tree structures, where a token can have
two incoming dependencies either from the same governor or from two different gov-
ernors. Examples of possible non-tree configurations containing two (biarc) and three
(triarc) dependencies are shown in Figure 4. Also these additional n-gram configurations
are limited to contain only single rooted subgraphs, meaning that each subgraph must
have only one root token. Since quadarcs are originally limited to include only one spe-
cific structure (shown in Figure 3Q), these non-tree configurations are not included in
quadarcs.

B1 T1

Figure 4. Example configurations of non-tree biarcs (B) and triarcs (T), without the extra functional depen-
dents.

Words are divided into content words and functional markers to distinguish meaning
bearing words from structural elements (e.g. adpositions and conjunctions). When con-
structing the syntactic n-grams, only the dependencies covering the content words are
included and thus each tree structured n-gram of order n includes exactly n+ 1 content
words, but can include any number of additional functional markers as extra dependents.
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However, in the non-tree n-gram structures one content word must have two incoming
dependencies, thus always removing one content word from the n-gram configuration.

Functional markers encoding coordinating conjunctions and prepositions (depen-
dency types cc and adpos) are always included in the n-grams, when also the particu-
lar coordination or prepositional phrase is present, whereas all other functional markers
(det, poss, neg, aux, auxpass, mark, complm and prt) are included only in the extended
datasets. The division between content words and functional markers follows the same
principles as in the English syntactic n-gram data.

For each word in a syntactic n-gram, we provide information about its word form,
lemma, main part-of-speech and all morphological tags, as well as its head in the syn-
tactic n-gram and its dependency relation to the head word. The n-grams also preserve
the relative order of the words, but naturally do not guarantee that the distance of the
words remains the same, since some of the linear context words may not be included.
Each unique n-gram is also associated with its count in the underlying corpus, where the
minimum occurrence count of 2 is used. All configurations, from nodes to quadarcs, are
made available.

Finally, we also make available verb-argument and noun-argument n-grams,
whereby we gather from the corpus every configuration of a verbal or nominal predicate
and all its syntactic dependents. In these datasets, all direct syntactic dependents of a
predicate (also including additional dependencies) are included regardless of whether the
word is seen as a content word or a functional marker. All words tagged as a verb or a
noun during the parsing are considered to be predicates.

The total number of unique n-grams is given in Table 2 with varying frequency
cut-off values. Only n-grams occurring at least two times in the underlying corpus are
included in the current n-gram collections.

Table 2. The size of the flat and syntactic n-gram data collections in terms of unique n-grams with varying
n-gram frequency cut-off values.

cut-off 5-grams nodes arcs biarcs triarcs quadarcs verb-args noun-args

2 264M 25M 187M 558M 1372M 300M 48M 57M
3 53M 14M 67M 142M 305M 59M 10M 16M
5 10M 7.9M 27M 39M 68M 11M 2.2M 5.4M
7 4.2M 5.8M 16M 20M 30M 4.4M 1.0M 3.0M
9 2.4M 4.7M 12M 13M 19M 2.5M 0.6M 2.0M

11 1.7M 4.0M 8.9M 9.5M 13M 1.7M 0.5M 1.6M

3. Vector Space Embeddings of Words

Distributional vector space representations of the lexicon, such as the Latent Semantic
Analysis and Random Indexing, are a useful tool in many natural language processing
tasks, as they provide the means to establish in an unsupervised fashion the semantic
similarity between words as well as higher units of text. To induce these representations,
a large corpus of text is necessary to provide sufficient statistics on word distribution.
Recently, word2vec, a new method to induce such vector space representations, was in-
troduced by Mikolov et al. [13]. The method stems from the research on neural network
language modeling, training a simplified neural network to predict nearby context words
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given a focus word. The vector space representations are then extracted from the internal
weights of the trained network. In addition to being very efficient, learning on billions of
tokens worth of data in a matter of hours, the quality of the representations induced by
word2vec has been shown to surpass a number of popular methods.

Complementary to the basic word2vec method, where the linear contexts of several
words before and after the focus word are used when inducing the representation, we
have also modified the method and its implementation to consider the syntactic context,
in much the same vein as Levy and Goldberg [14]. In this case, the context is formed by
the governor and the dependents of the target word, together with their mutual depen-
dency relations. As Levy and Goldberg show, this syntactically-informed method gener-
ates qualitatively substantially different representations, capturing less topical and more
functional similarity [14].

We applied both the basic and the syntactically-informed version of word2vec to the
parsed text corpus, and make available the resulting representations for all tokens with
frequency of at least 3.

4. Conclusions

The Finnish Internet Parsebank is the first large-scale fully syntactically analyzed cor-
pus of Finnish. The present public data release consists of both flat and syntactic n-gram
collections, as well as verb-argument and noun-argument n-grams, following the stan-
dard format of such collections for interoperability. The SD scheme’s second layer is
used when generating the n-grams. Together with the data, we also make available the
open-sourced tools to generate similar n-grams from a syntactically parsed text.11

As the parsebank constitutes a non-trivial amount of fully morpho-syntactically an-
alyzed recent Internet text, we expect it to be applicable in lexicographic research, mor-
phological analysis, semi-supervised dependency parsing, distributional semantics, lan-
guage modeling, and other research areas which traditionally benefit from large quanti-
ties of text analyzed to various degrees. To this end, we have applied vector space mod-
els induced from the data using the word2vec method to Finnish semantic role labeling
[15]. In addition to the n-gram collections, we make available also word2vec trained vec-
tor space models induced from the parsebank. Both linear and syntactic context-based
models are released.

Future work includes the development of a web-based interface for the search
through the full parsebank data, as well as a possible release of the full parsed documents,
pending the resolution of some outstanding legal questions.
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