

How Relevant Are Selectional Preferences for Transformer-based Language Models?

Eleni Metheniti (CLLE-CNRS|IRIT)

02.11.2020

How *Relevant* Are Selectional Preferences for Transformer-based Language Models?

Part o:

How do computers learn (human) language?

How do computers learn language?

With machine learning language models!

• Character vectors:

• Sub-word vectors:

e.g. <u>Byte-pair encoding (BPE)</u>: $\checkmark \rightarrow apple \rightarrow app le \rightarrow [165, 436]$

• Word-level vectors:

e.g. <u>One-hot encoding</u>: $\bigoplus^{\sim} \rightarrow apple \rightarrow 25 \rightarrow [1, 0, 0, 0, ...]$

How do computers learn language?

With machine learning language models!

Vectors \rightarrow Word Embeddings! \neg

	1	2	3	4	5	6	7		N
Ŭ	1	0	0	0	0	0	0	0	0
6	0	1	0	0	0	0	0	0	0
ŏ 🄌	0	0	1	0	0	0	0	0	0

Can we improve them?

Vectors \rightarrow Word Embeddings! \neg

	1	2	3	4	5	6	7		N
Ŭ	1	0	0	0	0	0	0	0	0
6	0	1	0	0	0	0	0	0	0
ŏ 🄌	0	0	1	0	0	0	0	0	0

Can we improve them? Yes! i

	Food	Fruit	Apple	Sweet	
Ŏ	1	1	1	0.5	0
6	1	1	0	0.5	0
ě	1	0	1	1	0

Vectors \rightarrow Word Embeddings! \neg

	1	2	3	4	5	6	7		N
Ŭ	1	0	0	0	0	0	0	0	0
6	0	1	0	0	0	0	0	0	0
ŏ 🄌	0	0	1	0	0	0	0	0	0

Can we improve them? Yes! i

	Food	Fruit	Apple	Sweet	
Ŏ	1	1	1	0.5	0
6	1	1	0	0.5	0
ě	1	0	1	1	0

• Text \rightarrow Algorithms \rightarrow (Unsupervised) Word embedding models: word2vec (2013), <u>GloVe</u> (2014), <u>fastText</u> (2015)...

• Text \rightarrow Algorithms \rightarrow (Unsupervised) Word embedding models: word2vec (2013), <u>GloVe</u> (2014), <u>fastText</u> (2015)...

Is one embedding enough?

- Sub-word information? OOV words? Multilingual connections?
- (0.5, 1, 0, 0, 0 ...] **AND** [0, 0, 0, 1, 1 ...]

Is one embedding enough?

- Sub-word information? OOV words? Multilingual connections?
- (0.5, 1, 0, 0, 0 ...] **AND** [0, 0, 0, 1, 1 ...]

Text \rightarrow Neural Network \rightarrow hidden state + word2vec embeddings \Rightarrow embedding information + text dependencies learned by the NN

Deep contextualised word representation

- <u>TagLM</u> (2017): <u>Recurrent Neural Network</u> (RNN)
- <u>ELMo</u> (2018): <u>Bidirectional Long Short Term Memory</u> (bi-LSTM) NN

Part 1:

Fine-tuned, deep contextualised word representation: **Transformer-based** Language models

The path to Transformers

seq2seq models

learning input serially

The path to Transformers

The path to Transformers

collects attention from the entire input, creates **representations**

(+ **multi-headed**, i.e. many subspaces!)

Transformer spotlight: **BERT**

BERT-base BERT-large

• Truly Bidirectional: self-attention context from both sides of the word

- Pre-train with a large amount of data
- Fine-tune with data specific to an NLP task

Petite pause café questions!

- Do they behave like **traditional embeddings** (distribution, transformations)?
 - Yes... maybe in the higher layers

- Do they behave like **traditional embeddings** (distribution, transformations)?
 - Yes... maybe in the higher layers
- Do they have syntactic information?
 - Hierarchical, tree-like structure
 - Bidirectionality really helped!
 - Parts of speech, syntactic chunks and roles, but not distant relations
 - (Probably) No full syntactic trees, but syntactic transformations and dependencies
 - Bad with negation and with "bad" input
 - Does it really understand syntax?

- Do they have **semantic information**?
 - Some knowledge of semantic roles, entity types, relations, proto-roles
 - Can't generalize!
- Do they have world knowledge?
 - Fills the blanks successfully, but not enough!
 - Bad at inference, bias?!

Question:

Do BERT encodings capture linguistic information; specifically, the selectional preferences of a verb for its predicates?

Part 2:

Selectional Preferences

What are selectional preferences?

The athlete runs a marathon = (2 + 2) + (2 + 2) - 2 = 2

The trumpet runs a banana = $(\cancel{2} + \cancel{2}) + (\cancel{2} + \cancel{2}) - (\cancel{2} + \cancel{2}) - (\cancel{2} + \cancel{2}) + (\cancel{2} + \cancel{2}) +$

We can tell the difference... But can BERT?

Methodology

- 1. Use BERT-base Masked Language Model (MLM)
- 2. Create sentences with [MASK]ed dependent word
 - Sentences with (in)felicitous head-dependent pairings
- 3. Retrieve the **probability** assigned to dependent word
 - Use different scenarios: attention can only access certain words!
- 4. Is the **probability correlated** to the **degree of felicity**?

SP-10K: Selectional Preference Corpus

- Pairs of head word + dependent word, score of plausibility (felicity) 0-10
- 10K pairs, 2500 words, 5 categories:

• Combined with ukWaC corpus

Hongming Zhang, Hantian Ding, and Yangqiu Song. 2019. SP-10K: <u>A large-scale evaluation set for</u> selectional preference acquisition. Adriano Ferraresi, Eros Zanchetta, Marco Baroni, and Silvia Bernardini. 2008. Introducing and evaluating ukWaC, a very large web-derived corpus of English.

Our corpus

Туре	Word pairs in ukWaC	Final sents	Avg. plausibility score
nsubj	958 / 2,000	30,526	6.64
dobj	980 / 2,000	56,777	7.39
amod	1,030 / 2,000	23,110	7.62
nsubj_amod	956/2,061	12,911	5.75
dobj_amod	922 / 2,063	21,839	6.32
TOTAL	4846 / 10,124	145,163	

- Short sentences (4-15), distance of pair < 5
- Problems with BERT tokenizer, problems with SP-10K
- Too low plausibility -> impossible to find!


```
[MASK] = "additional"
```


Attention mask

sentence		the	film	tells	the	story	of	that	trial
standard	[CLS]	the	film	tells	the	[MASK]	of	that	trial
Standard	[1,	1,	1,	1,	1,	1,	1,	1,	1]
head	[CLS]	the	film		the	[MASK]	of	that	trial
	[1,	1,	1,	Ο,	1,	1,	1,	1,	1]
context	[CLS]			tells		[MASK]			
	[1,	Ο,	Ο,	1,	Ο,	1,	Ο,	Ο,	0]
control	[CLS]					[MASK]			
	[1,	0,	0,	0,	Ο,	1,	Ο,	Ο,	0]

Results

- Kendall T correlation of probability + plausibility
- Significant correlation: <-0.4 or >0.4

	standard	head	context	control	
nsubj	0.03	-0.02	0.16	-0.01	
dobj	0.05	-0.07	0.05	-0.05	
amod	0.04	-0.06	0.24	-0.04	
nsubj_amod	-0.01	-0.13	0.29	0	
dobj_amod	0.06	0.01	-0.03	0.02	

	standard	head	context	control
nsubj	0.19	0.15	0.29	0.08
dobj	0.16	0.04	0.27	0.05
amod	0.15	0.03	0.35	0.03
nsubj_amod	0.01	-0.04	0.22	0.06
dobj_amod	0.14	0.1	0.2	0.07

Micro-averaged

Macro-averaged

Results: nsubj

- Do we notice some head categories with strong positive/negative correlations? NO
 e.g. kill: strong positive, shoot: strong negative, strike: no correlation
- What happens with **attention masks**?
 - head: (slightly) worse than standard
 - context: better than standard, but not strong correlation

Results: dobj

- Do we notice some head categories with strong positive/negative correlations? **NO**
- Do we notice some dependent categories with strong correlations? No...
 e.g. blame customer < blame management (but not with head mask!)
- What happens with **attention masks**?
 - head: worse than standard
 - context: better than standard, but not strong correlation

Results: amod

- NB: Overall highest plausibility scores
- Do we notice some head categories with strong positive/negative correlations? **NO**
- BERT likes high-frequency adjectives, but they are not always the best fit...
- What happens with **attention masks**?
 - head: worse than standard
 - context: better than standard, but not strong correlation

Results: nsubj_amod

- NB: Overall lower plausibility scores
- Do we notice some head categories with strong positive/negative correlations? **NO**
- BERT likes high-frequency adjectives, but they are not always the best fit...
- What happens with **attention masks**?
 - head: worse than standard
 - context: better than standard, but not strong correlation (+0.20 improvement!)

Results: dobj_amod

- NB: Overall lower plausibility scores
- Do we notice some head categories with strong positive/negative correlations? **NO** Harder to make assumptions with two-hop relations
- Do we notice some dependent categories with strong correlations? **NO**
- What happens with **attention masks**?
 - head: worse than standard
 - context: (not) better than standard, but not strong correlation (smallest)

Discussion

- Problems with plausibility scores in the SP-10K corpus
- Never found all word pairs in corpus...
- No strong correlations but... BERT did capture preferences and constraints!
- Attention: Head word was more important than the entire sequence!

Future directions

- Current work: BERT and Telicity:
 - Telic/Atelic verbs + Prepositional phrases: does BERT see a link?
- Future work: Multiple layers and heads, which one of them is best?

Merci pour votre attention! Y a-t-il des questions?

(Even more) Neural Network resources

- 3Blue1Brown 4-video series (avec sous-titres!): <u>Neural Networks</u>
- Jason Brownlee's blog: <u>Machine Learning Mastery</u>
- Jay Allamar's blog: visualizations of neural networks & videos, very up-to-date
- Stanford University's <u>CS224n: Natural Language Processing with Deep Learning</u>: full lectures in video, slides, special guests
- <u>BERT for dummies</u>: article + some code to get started!
- Rasa YouTube Channel, <u>NLP for Developers</u>

Talk on Transformers (by its creators)

Stanford CS224N: NLP with Deep Learning Winter 2019 Lecture 14 – Transformers and Self-Attention

> Chris Manning, Ashish Vaswani, Anna Huang

Merci pour votre attention! Y a-t-il des questions?