About Time : (How) do Transformers learn Temporal Verbal Aspect?

Eleni Metheniti Nabil Hathout Tim Van de Cruys (CLLE-CNRS | IRIT) (CLLE-CNRS) (KU Leuven)

29.11.2021 Thématiques actuelles de la recherche en TAL

How do computers learn (human) language?

How do computers learn language?

With machine learning language models!

• Character vectors:

- Sub-word vectors:
 e.g. <u>Byte-pair encoding (BPE)</u>: → apple → app le → [165, 436]
- Word-level vectors:

e.g. <u>One-hot encoding</u>: $\bigoplus \rightarrow apple \rightarrow 25 \rightarrow [1, 0, 0, 0, ...]$

How do computers learn language?

With machine learning language models!

• Character vectors:

 $\stackrel{\bullet}{\longrightarrow} apple \rightarrow apple \rightarrow [1, 16, 16, 11, 5]$

- Sub-word vectors:
 e.g. <u>Byte-pair encoding (BPE)</u>: → *apple* → app le → [165, 436]
- Word-level vectors:

e.g. <u>One-hot encoding</u>: $\bigoplus \rightarrow apple \rightarrow 25 \rightarrow [1, 0, 0, 0, ...]$

Vectors \rightarrow Word Embeddings! \neg

	1	2	3	4	5	6	7		Ν
Ŭ	1	0	0	0	0	0	0	0	0
6	0	1	0	0	0	0	0	0	0
)	0	0	1	0	0	0	0	0	0

Can we improve them?

Vectors \rightarrow Word Embeddings! \neg

	1	2	3	4	5	6	7		Ν
Ŭ	1	0	0	0	0	0	0	0	0
6	0	1	0	0	0	0	0	0	0
Ö 🌽	0	0	1	0	0	0	0	0	0

Can we improve them? Yes!

	Food	Fruit	Apple	Sweet	
Ŭ	1	1	1	0.5	0
6	1	1	0	0.5	0
ö ≽	1	0	1	1	0

Vectors \rightarrow Word Embeddings! \neg

	1	2	3	4	5	6	7		N
Ŭ	1	0	0	0	0	0	0	0	0
6	0	1	0	0	0	0	0	0	0
)	0	0	1	0	0	0	0	0	0

Can we improve them? Yes!

	Food	Fruit	Apple	Sweet	
Ŭ	1	1	1	0.5	0
6	1	1	0	0.5	0
ě ≽	1	0	1	1	0

 Text → Algorithms → (Unsupervised) Word embedding models: word2vec (2013), GloVe (2014), fastText (2015)...

• Text \rightarrow Algorithms \rightarrow (Unsupervised) Word embedding models: word2vec (2013), <u>GloVe</u> (2014), <u>fastText</u> (2015)...

9

Is one embedding enough?

- Sub-word information? OOV words? Multilingual connections?
- $0 \rightarrow [0.5, 1, 0, 0, 0 \dots]$ **AND** [0, 0, 0, 1, 1 \ldots]

Is one embedding enough?

- Sub-word information? OOV words? Multilingual connections?
- $(0.5, 1, 0, 0, 0 \dots]$ **AND** [0, 0, 0, 1, 1 \dots]

Text \rightarrow Neural Network \rightarrow hidden state + word2vec embeddings \Rightarrow embedding information + text dependencies learned by the NN

Deep contextualised word representation

- <u>TagLM</u> (2017): <u>Recurrent Neural Network</u> (RNN)
- <u>ELMo</u> (2018): <u>Bidirectional Long Short Term Memory</u> (bi-LSTM) NN

Fine-tuned, deep contextualised word representations: Transformer-based Language models

The path to Transformers

seq2seq models

_ __ __

learning input serially

The path to Transformers

_ __ _

 seq2seq models
 →
 seq2seq + attention

 Image: seq2seq models
 Image: seq2seq + attention
 Image: seq2seq + attention

 Image: seq2seq models
 Image: seq2seq + attention
 Image: seq2seq + attention

 Image: seq2seq models
 Image: seq2seq + attention
 Image: seq2seq + attention

 Image: seq2seq models
 Image: seq2seq + attention
 Image: seq2seq + attention

 Image: seq2seq models
 Image: seq2seq + attention
 Image: seq2seq + attention

 Image: seq2seq models
 Image: seq2seq + attention
 Image: seq2seq + attention

 Image: seq2seq models
 Image: seq2seq + attention
 Image: seq2seq + attention

 Image: seq2seq models
 Image: seq2seq + attention
 Image: seq2seq + attention

 Image: seq2seq models
 Image: seq2seq + attention
 Image: seq2seq + attention

 Image: seq2seq models
 Image: seq2seq + attention
 Image: seq2seq + attention

 Image: seq2seq models
 Image: seq2seq + attention
 Image: seq2seq + attention

 Image: seq2seq models
 Image: seq2seq + attention
 Image: seq2seq + attention

 Image: seq2seq models
 Image: seq2seq + attention
 Image: seq2seq + attention

 Image: seq2seq models
 Image: seq2seq + attention
 Image: seq2seq

The path to Transformers

collects attention from the entire input, creates **representations**

(+ **multi-headed**, i.e. many subspaces!)

Transformer spotlight: **<u>BERT</u>**

BERT-base BERT-large

• Truly Bidirectional: self-attention context from both sides of the word

- Pre-train with a large amount of data
- Fine-tune with data specific to an NLP task

Even more Transformers!

- <u>RoBERTa</u>: more subwords, more <u>mini-batches</u>, larger <u>learning rates</u>
- <u>ALBERT</u>: smaller and more efficient, learns context-dependent and context-independent representations
- <u>XLNET</u>: more computations between words, better dependencies and relations

Petite pause café questions!

Rogers, A., Kovaleva, O., & Rumshisky, A. (2020). A primer in bertology: What we know about how BERT works. arXiv preprint arXiv:2002.12327.

- Do they behave like **traditional embeddings** (distribution, transformations)?
 - Yes... maybe in the higher layers

- Do they behave like **traditional embeddings** (distribution, transformations)?
 - Yes... maybe in the higher layers
- Do they have **syntactic information**?
 - Hierarchical, tree-like structure
 - Bidirectionality really helped!
 - Parts of speech, syntactic chunks and roles, but not distant relations
 - (Probably) No full syntactic trees, but syntactic transformations and dependencies
 - Bad with negation and with "bad" input
 - Does it really understand syntax?

- Do they have **semantic information**?
 - Some knowledge of semantic roles, entity types, relations, proto-roles
 - Can't generalize!
- Do they have **world knowledge**?
 - Fills the blanks successfully, but not enough!
 - Bad at inference, bias?!

Can *transformers* capture more fine-grained semantic information...?

... specifically, features of lexical aspect?

What is lexical aspect?

• Lexical aspect ≠ Grammatical aspect ≠ Mood ≠ Tense

- Temporal features of a verb's described action, event or state:
 - frequence
 - duration: stative, punctual, durative
 - **telicity**: telic, atelic

Telicity and Duration

- **Telicity:** is there an end point to an action?
 - Telic: "I ate a fish." "The soup cooled in an hour."
 - Atelic: "John watched TV." "Nobody laughs at my jokes."
- **Duration:** is there an action or a state?
 - Stative: "I disagree with you." "Bread is made of flour."
 - Punctual: "I knocked on the door."
 - Durative: "I walked." "I slept all morning."

Question

Can transformers understand telicity and duration?

- Does providing the **verb position** help with predictions?
- Which architectures are most **successful**?
- When is classification **possible** or unsuccessful?
- How does the **attention** mechanism focus on aspect?
- Differences between English and **French**?

Fine-tuning a transformer

- Transformers + millions of sentences + hours days months of training ⇒
 Pretrained language models
- Very good... but can be better!
- Pretrained language models + (small) <u>specialized</u> data + (reasonable) training ⇒ Finetuned language models
- Even better on a specialized task!

Experimental setup

Pretrained transformer models

EN: BERT, RoBERTa, XLNet, Albert FR: CamemBERT, FlauBERT

Annotated datasets

Friedrich and Gateva (2017) Alikhani and Stone (2019)

> Alikhani, M., & Stone, M. (2019, June). <u>"Caption" as a Coherence Relation: Evidence and Implications.</u> In Proceedings of the Second Workshop on Shortcomings in Vision and Language (pp. 58-67).
> Friedrich, A., & Gateva, D. (2017, September). <u>Classification of telicity using cross-linguistic annotation projection.</u> In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (pp. 2559-2565).

Experimental setup

Finetuning for telicity or duration (with/out verb position embedding)

Experimental setup

Datasets

_ __ _

• Training and quantitative analysis:

Туре	Label	F&G	A&S	Ours	1st exp.	2nd exp.
telicity	telic	1,831	785	2,885	5 083	6,173
tencity	atelic	2,661	1,256	3,288	5,065	
	stative	1,860	419	2,036		
duration	durative	38	1,843	2,045	4,095	4,081
	punctual	-	355	-		

• Qualitative analysis:

- 40 sentences for telicity, 40 for duration
- 40 "minimal pairs" of telicity
- \circ $\hfill More pairs on telicity, with different word order and tense$

First experiment

• <u>Article</u>:

Eleni Metheniti, Tim van de Cruys, Nabil Hathout. Prédire l'aspect linguistique en anglais au moyen de transformers. *Traitement Automatique des Langues Naturelles* (TALN 2021), 2021, Lille, France. pp.209-218.

• <u>Poster</u>

Telicity results

- All models achieved accuracy of >0.80
- BERT models outperformed the rest: 0.88 (bert-large-cased)
- RoBERTa models quite successful, XL-Net and ALBERT models less successful
- Verb positions: very small improvement (+1-5%)

Model	Verb position?	Accuracy
	yes	0.86
bert-base-uncased	no	0.81
	yes	0.87
bert-base-cased	no	0.81
	yes	0.86
bert-large-uncased	no	0.81
	yes	0.88
bert-large-cased	no	0.81
roberta-base	no	0.84
roberta-large	no	0.8
	yes	0.82
xlnet-base-cased	no	0.81
	yes	0.82
xInet-large-cased	no	0.8
	yes	0.84
albert-base-v2	no	0.81
	yes	0.8
albert-large-v2	no	0.82
CNN (50 epochs)	no	0.75
Logistic Regression	no	0.61

34

Duration results

- Very high accuracy, models achieved accuracy of >0.93
- BERT models slightly outperformed the rest (in general)
- All models were very successful

• Verb positions: no improvement (±1-2%)

Model	Verb position?	Accuracy
	yes	0.96
bert-base-uncased	no	0.94
	yes	0.96
bert-base-cased	no	0.96
	yes	0.96
bert-large-uncased	no	0.95
	yes	0.96
bert-large-cased	no	0.95
roberta-base	no	0.95
roberta-large	no	0.95
	yes	0.94
xInet-base-cased	no	0.95
	yes	0.94
xInet-large-cased	no	0.95
	yes	0.95
albert-base-v2	no	0.95
	yes	0.96
albert-large-v2	no	0.96
CNN (50 epochs)	no	0.88
Logistic Regression	no	0.7

35

Qualitative analysis: telicity

- Correct in most cases and models, but problem with conflicting verb context
 - ✓ Cork floats on water.
 - \checkmark The Earth revolves around the Sun.
 - \checkmark I spilled the milk.
 - \checkmark I always spill milk when I pour it in my mug.
 - *X* I eat a fish for lunch on Fridays.
 - X The inspectors are always checking every document very carefully.

Qualitative analysis: telicity

• Minimal pairs:

_ __ __

- ✓ I drank the whole bottle.
- ✓ I drank juice.
- *X* The cat drank **all** the milk.
- *X* The boy is eating **an apple**.
- \checkmark The boy is eating **apples**.

Qualitative analysis: telicity

- Word order and tenses:
 - *X* I ate a fish for lunch at noon. At noon I ate a fish for lunch.
 - ✓ I had eaten a fish for lunch at noon. At noon I had eaten a fish for lunch.
 - *X* The Prime Minister **made** that declaration **for months**.
 - ✓ **For months** the Prime Minister **has been making** that declaration.

Qualitative analysis: duration

- Stative sentences were more difficult than durative sentences for the models:
 - *X* Bread consists of flour, water and yeast.
 - ✓ I disagree with you.
- Durative sentences always correctly classified:
 - ✓ She plays tennis every Friday.
 - ✓ She is playing tennis right now.

Attention mechanism

- BERT models in earlier layers: "focused" attention to specific tokens
- Other models: "diffused" attention early
- bert-base-uncased, layer 3, heads 1-12:

"I read the book for an hour."

What do pretrained embeddings already know?

- Classification with (contextual) embeddings for verb & logistic regression, per layer
- Higher accuracy in middle layers and final layers, drops in the last

Classification for French

- Same datasets (translated), same procedure of classification
- Telicity: 0.77 (camembert-base, flaubert-base-cased)
- Duration: 0.87 (camembert-large, flaubert-large-cased)
- Verb position deteriorated the results
- Better performance at qualitative sets!
- Telicity:
 - Je mange un poisson à midi les vendredis.
- Duration:
 - *X* Le pain est composé de farine, d'eau et de levure.

Discussion

- Contextual embeddings are good at telicity & duration, even without finetuning!
- Why did BERT models outperform? Probably because of segmentation?
- Qualitative analysis:
 - Verb features > context > infelicitous context
 - Word order, tense were influential (to some degree)
 - French morphosyntax might have been "easier" for the models than English

Merci pour votre (self-)attention! Y a-t-il des questions?

(Even more) Neural Network resources

- 3Blue1Brown 4-video series (avec sous-titres!): <u>Neural Networks</u>
- Jason Brownlee's blog: <u>Machine Learning Mastery</u>
- Jay Allamar's blog: visualizations of neural networks & videos, very up-to-date
- Stanford University's <u>CS224n: Natural Language Processing with Deep Learning</u>: full lectures in video, slides, special guests
- <u>BERT for dummies</u>: article + some code to get started!
- Rasa YouTube Channel, <u>NLP for Developers</u>

Talk on Transformers (by its creators)

Stanford CS224N: NLP with Deep Learning Winter 2019 Lecture 14 – Transformers and Self-Attention

> Chris Manning, Ashish Vaswani, Anna Huang