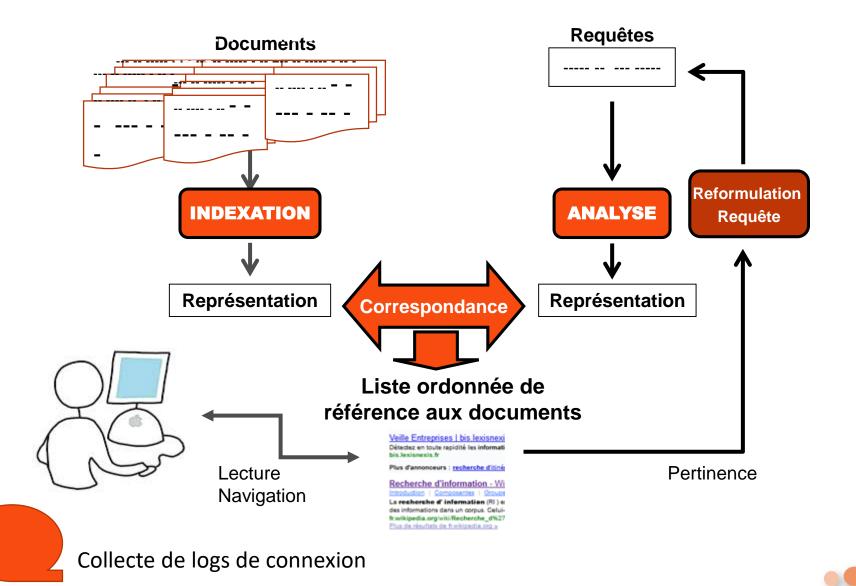


Prédiction de la performance et traitement sélectif des requêtes dans les moteurs de recherche d'information

Josiane Mothe Professeure INSPE, UT2J

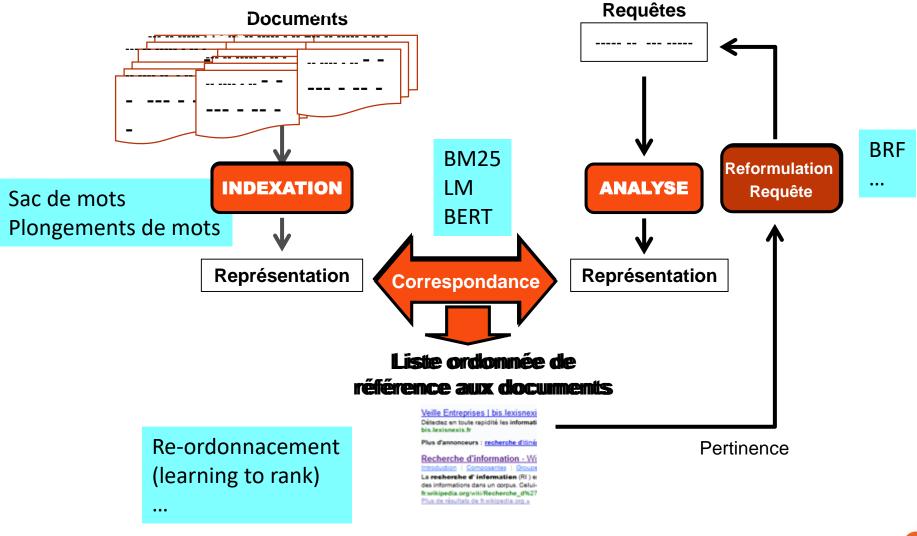
TIRIT

Recherche d'Information



1

Recherche d'Information - variantes



CLEF, Déjean et al., 2019

Exemples de paramètres des systèmes de RI dans Terrier

Parameters	Meaning	Values
Тор	Topic number	351,, 400
Field	Topic field	T, T+D, T+D+N
Bloc	Size of the indexing bloc	1, 5, 10
ldf	Inverse Document Frequency	FALSE, TRUE
Ref	Query reformulation	None, Bolbfree, Bo2bfree, KLbfree
Model	Retrieval model	BB2c1, BM25b0.5, DFRBM25c1.0, IFB2c1.0, InexpB2c1.0, InexpC2c1.0, InL2c1.0, PL2c1.0, TFIDF
DocNb	Number of documents (reformulation)	0, 3, 5, 10, 50, 100, 200
qe_md	Minimum number of documents in which the term should appear to used in the query expension	0, 2
qe_t	Number of terms used in the query expension	0, 1

İRIT

Evaluation de la Recherche d'Information

Text REtrieval Conference (TREC)

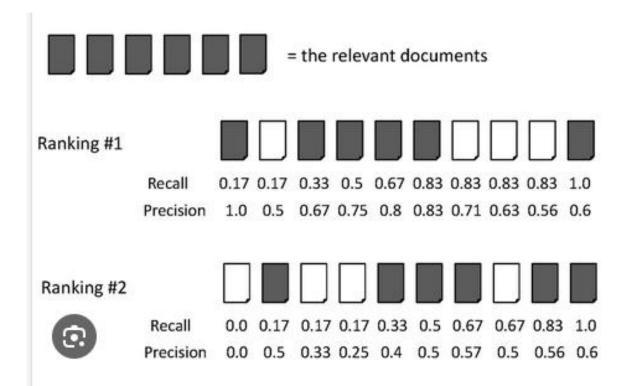
...to encourage research in information retrieval from large text collections.

• Test collections

- TREC78 -- 100 Topics (351 450)
- WT10G -- 100 Topics (451 550)
- GOV2 -- 150 Topics (701 850)

- Collections
 - Documents
 - Requêtes
 - Réponse attendue (QREL)
- Mesure d'évaluation
 - Rappel
 - Précision
 - P@10
 - AP
 -

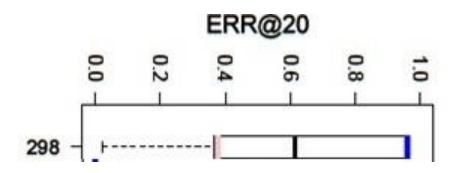
Evaluation de la Recherche d'Information



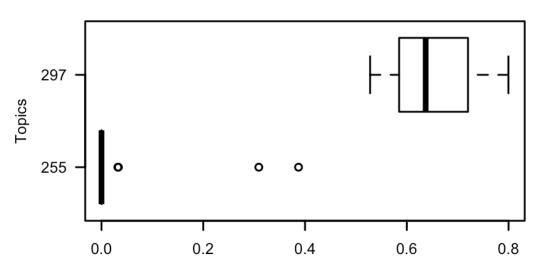
P@10 AP (Average precision) nDCG (Normalized DCG)

https://stackoverflow.com/questions/40801196/some-ideas-and-direction-of-how-to-measure-ranking-ap-map-recall-for-ir-evalu

- Search engines have an answer whatever the query is BUT
- Evaluation compaigns showed
 - System variety (the difficulty depends on the system



- Evaluation compaigns showed
 - System variety
 - Some queries are easy, some are difficult



NDCG@20 values

NDCG@20

• What is a difficult query ?

• (IR) Defined regarding system effectiveness

Difficult topic = Poor effectiveness

• (Psy) Defined regarding human difficulty

Difficult task = hard for users (cognitive)

• Back to the Reliable Information Access (RIA) Workshop (2004) [Harman, 2009, IR journal]

Main research directions

Query difficulty prediction

- Predict whether a query is difficult or not
- Performance prediction: Predict the value of the effectiveness measure
- Adaptive systems / selective query processing
 - Different systems (parameters) for different queries
- User studies
 - Measure users' abilities with regard to query difficulty

• Why?

To handle differently queries

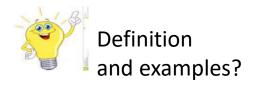
Examples?

Selective query expansion: the system decides whether the query should be expanded or not [Amati et al., 2004]

Adaptive system: the system adjusts its parameters according to the query features [Deveaud et al., 2016]

• Types

Pre-retrieval vs Post-retrieval



Pre-retrieval:

does not need to process the query over the document collection

Post: does need

Based on Statistics vs Linguistics

• Examples

- IDF : min, max, mean, ... of the IDF of the query terms
- SynSet: ... number of synonyms of the query terms [Mothe & Tanguy, 2005]
- Query scope: ratio of the documents that contain at least one query term [Kanoulas et al., 2017]
- Query Feedback (QF) : overlap between these two retrieved document lists [Zhou & Croft, 2007]
- Weighted Information Gain (WIG) : divergence between the mean of the top-retrieved document scores and the mean of the entire set of document scores [Zhou & Croft, 2007]
- Normalized Query Commitment (NQC) : standard deviation of the retrieved document scores [Shtok et al., 2009]
- Clarity score: KL-divergence between the LM of the retrieved documents and the LM of the document collection [Cronen-Townsend & Croft, 2002]
- Letor features: agregations of document scores [Chifu et al. 2018]

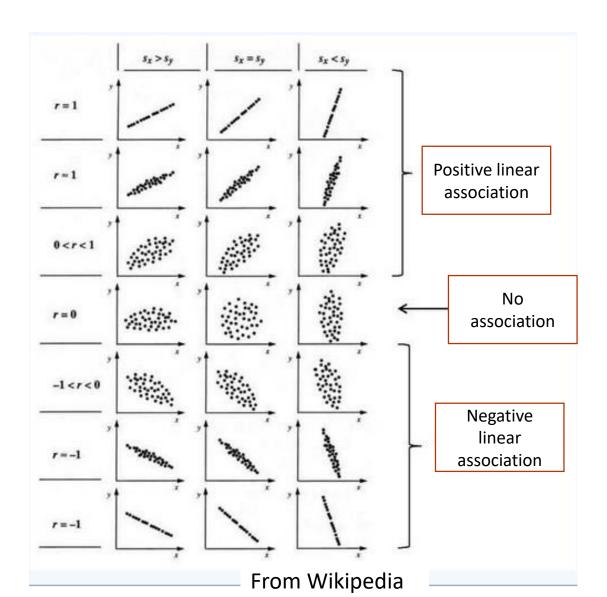
Evaluation of query difficulty predictors

• How to evaluate whether a feature is a good predictor?

 Correlation on values (Bravais-Pearson) or on ranks (Kendall or Spearman)

Interpretation ?

Linear correlation Bravais-Pearson



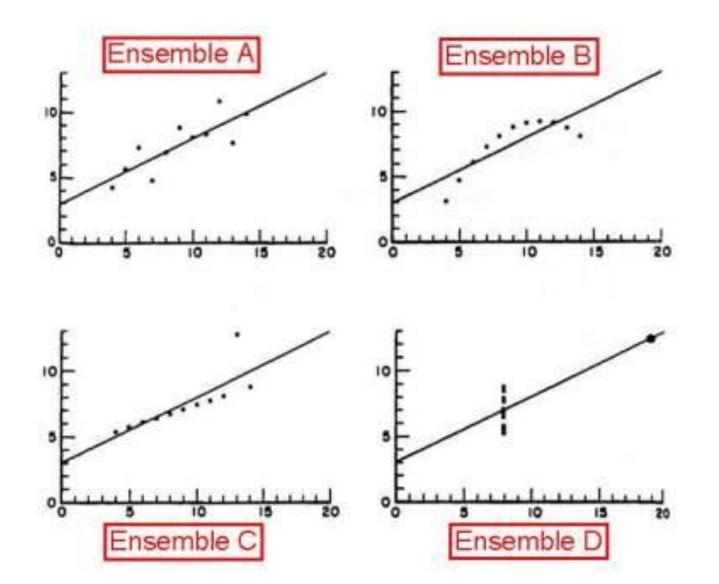
าเราโ

Linear correlation Bravais-Pearson

Data	a set A	Da	ta set B	Da	ta set C	Dat	a set D
X_i	y_i	X_i	y_i	x_i	y_i	x_i	y_i
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74	13	12.74	8	7.71
9	8.81	9	8.77	9	7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.10	14	8.84	8	7.04
6	7.24	6	6.13	6	6.08	8	5.25
4	4.26	4	3.10	4	5.39	19	12.50
12	10.84	12	9.13	12	8.15	8	5.56
7	4.82	7	7.26	7	6.42	8	7.91
5	5.68	5	4.74	5	5.73	8	6.89

İTIRIT

Linear correlation Bravais-Pearson



ECIR 2023, Mothe

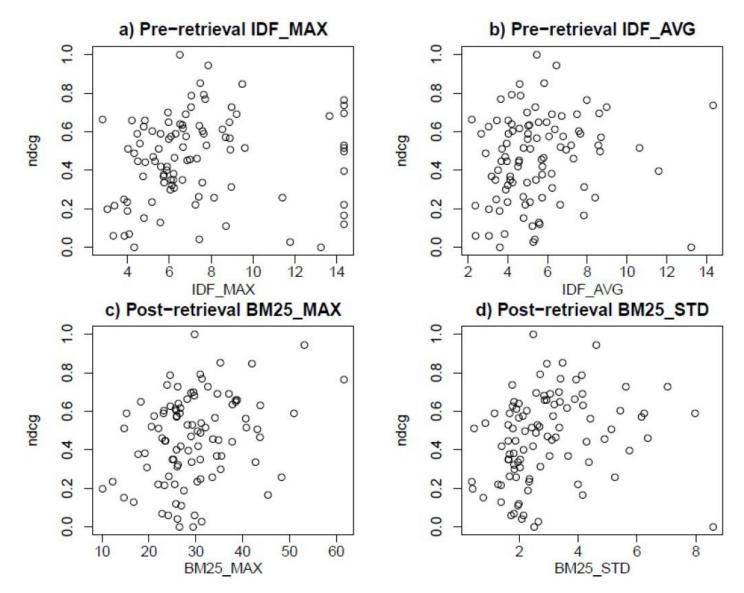
Correlation values should be consider with caution

		Feature		
Measure	BM25_MAX	BM25_STD	IDF_MAX	IDF_AVG
Pearson ρ	0.294*	0.232*	0.095	0.127
Spearman r	0.260*	0.348*	0.236*	0.196
Kendall $ au$	0.172*	0.230*	0.159*	0.136*
		Feature		
correlation	BM25_MAX	BM25_STD	IDF_MAX	IDF_AVG
Removing to	pic 463 only			
ρ	0.294*	0.339*	0.142	0.225*
r	0.268	0.342	0.234	0.183
,	0.200			

18 **İ**RIT

ECIR 2023, Mothe

Correlation values should be consider with caution



19 **İ**RIT

		TRE	C Vol.	4+5		WT10g			GOV 2	
		$\mu 100$	$\mu 1500$	$\mu 5000$	$\mu 100$		$\mu 5000$	$\mu 100$	$\mu 1500$	$\mu 5000$
	AvQL[6]	0.13	0.14	0.16	-0.11	-0.14	-0.12	-0.05	0.02	0.03
\geq	AvIDF[3]	0.52^{*}	0.53*	0.59*	0.21*	0.18	0.18	0.37^{*}	0.32^{*}	0.39*
E	MaxIDF[9]	0.52^{*}	0.54*	0.60*	0.31*	0.30*	0.30*	0.35^{*}	0.35^{*}	0.43*
D	DevIDF[4]	0.22*	0.24*	0.26*	0.21*	0.25*	0.27^{*}	0.14	0.20*	0.27*
IFI	AvICTF[4]	0.50*	0.50*	0.56*	0.20	0.16	0.16	0.34^{*}	0.30*	0.37*
E	SCS[4]	0.49*	0.49*	0.55*	0.15	0.13	0.13	0.31*	0.26*	0.34*
EO	QS[4]	0.42*	0.42*	0.47*	0.09	0.05	0.05	0.26*	0.18*	0.22*
E.	AvSCQ[11]	0.25*	0.27*	0.31*	0.32*	0.30*	0.30*	0.40*	0.36*	0.39*
SP	SumSCQ[11]	-0.01		0.00	0.20*	0.18	0.15	0.23^{*}	0.23^{*}	0.19^{*}
	MaxSCQ[11]	0.32*	0.35*	0.38*	0.36*	0.41*	0.45*	0.39*	0.42^{*}	0.46*
3.1	AvQC[5]			0.51^{*}	0.18	0.17	0.17	0.28^{*}	0.31^{*}	0.38*
Į	AvQCG[5]			0.37^{*}	0.00	-0.03	-0.03	0.04	0.05	0.08
AMB	AvNP[6]	-0.20*	-0.23*	-0.26*	-0.09	-0.10	-0.10	-0.06	-0.04	-0.05
4	AvP	-0.11	-0.12	-0.14	-0.17	-0.18		0.02	0.01	0.00
	AvPMI		0.35*	0.39*	0.33*	0.28^{-}		0.26^{*}	0.29*	0.33*
H	MaxPMI			0.33^{*}	0.31*	0.27*	0.24^{*}	0.28*	0.31^{*}	0.32^{*}
REL	AvLesk[2]			0.27*	0.00	0.01	0.02	0.04	0.08	0.11
-	AvPath[8]		0.14	0.16	0.01	0.04	0.05	-0.02	0.03	0.07
	AvVP[7]	0.25*		0.27*	-0.06	-0.06	-0.05	-0.01	0.09	0.13
M	AvVAR[11]		0.52^{-1}	0.56*	0.29*	0.29*	0.30=	0.43*	0.40*	0.42^{*}
Z	SumVAR[11]		0.30*	0.31^{*}	0.31^{*}	0.29*	0.28^{*}	0.33*	0.34*	0.30*
ГĽ,	MaxVAR[11]	0.48*	0.52^{*}	0.54*	0.36*	0.42*	0.47*	0.40*	0.43*	0.46*

Table 1: Results of the predictor evaluations given by the linear correlation coefficient.

20

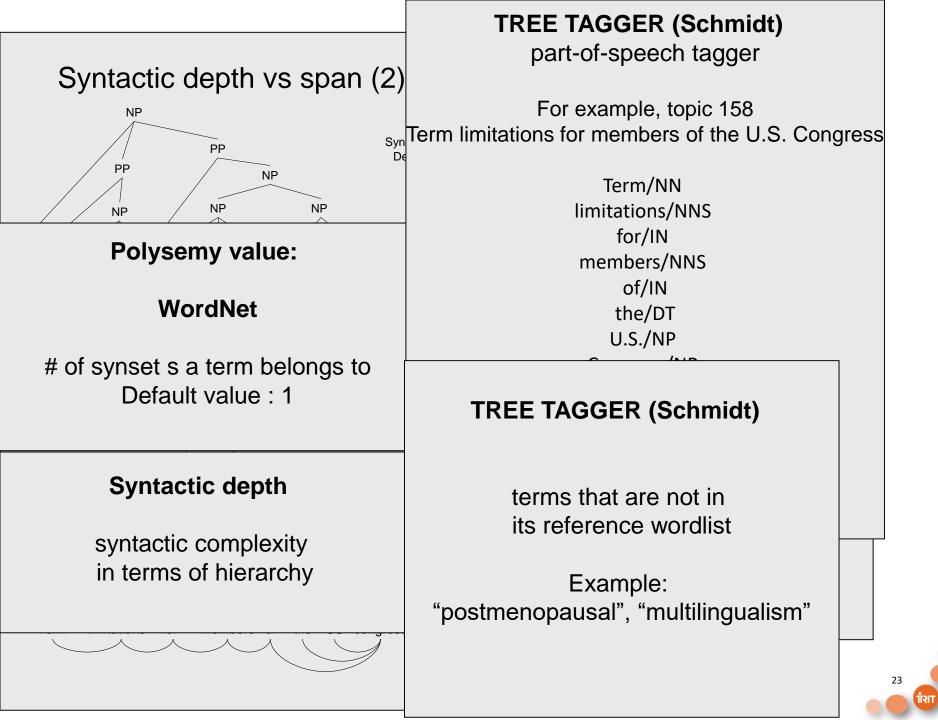
- Pre-retrieval
- Linguistic-based

J. Mothe and L. Tanguy. Linguistic features to predict query difficulty. In Predicting query difficulty methods and applications Workshop, Int. Conf. on Research and Development in Information Retrieval, SIGIR, pages 7–10, 2005.

Method and data

- Queries
 - 200 TREC queries (TREC 3, 5, 6 and 7)
 - Title query (closest to real users'queries)
 - Feature extraction
- Participants' runs adhoc task

	TREC 3	TREC 5	TREC 6	TREC 7
# runs	40	61	80	103
# queries	50	50	50	50



Analysis

- Correlations
 - Correlation between recall and features
 - Correlation between precision and features
 - Pearson coefficient [-1,1]
 - The higher => the stronger correlation
 - Positive or negative correlation
 - Significance p-value
 - Estimate prob. of correlation being due to random
 - The smaller => the higher confidence

	Ana Resul	lysi	İS
•	Resul	ts	

TREC Campaign	Significant variables for Recall	Significant variables for Precision
TREC 3	- PREP - SYNTDEPTH - SYNSETS	- SUFFIX - NBWORDS - CC
TREC 5		- SYNTDIST - SYNTDEPTH
TREC 6	- SYNSETS + PN	
TREC 7	- SYNSETS	+ PN - LENGTH - SYNTDIST

Significant correlations

- (**p-value** <= **0.05**)
- between
- linguistic features and
- recall / precision

Letor features as predictors

- Letor features:
 - query-document scores, aggregated over the documents for a query

Table Pearson correlation of the WMODEL:DFIZ_std [13] SLF predictor according to n, the number of top-ranked retrieved documents considered when calculating the feature.

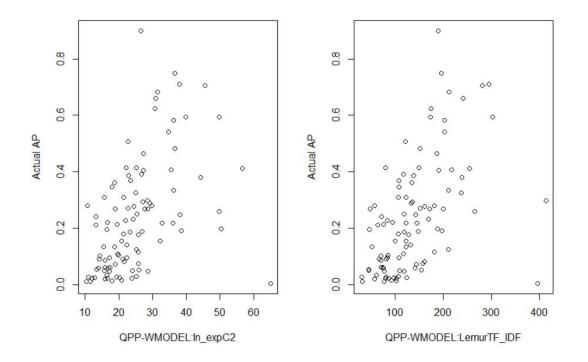
	n	5	10	50	100	500	1000
	Robust	.056	.065	.089	.081	.146*	.191*
AP	WT10G	.027	084	.163	.142	.175	.217*
AP	GOV2	.261*	.385+	.409+	.407+	.453+	.453+
	ClueWeb12B	.320*	.255*	.266*	.243*	.269*	.298*
	Robust	.081	.119	.183*	.191*	.252+	.306+
NDCG	WT10G	.069	032	.224*	.217*	.294*	.321*
NDCG	GOV2	.285+	.397+	.426+	.418+	.453+	.447+
	ClueWeb12B	.246*	.234*	.253*	.224*	.265*	.301*

Combination of Letor features

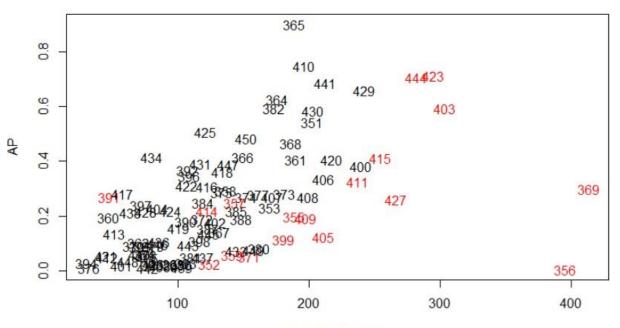
Table Performance of linear regression of combined postretrieval predictors according to Pearson correlation.

	Combination	Robust	WT10G	GOV2	ClueWeb
	S_1 : WIG + QF	.459+	.274*	.399+	.287*
	S2: 2 Best SLF	.382+	.404+	.438+	.237*
AP	S3: Best SLF	.402+	.339+	.420+	.302*
	$S_4: S_1 \cup S_2$.478+	.420+	.465+	.260*
	$S_1 \cup S_3$: All	.454+	.427+	.509+	.208*
	S_1 : WIG + QF	.537+	.303*	.405+	.286*
	S2: 2 Best SLF	.430+	.449+	.469+	.211*
NDCG	S3: Best SLF	.458+	.457+	.464+	.312*
	$S_4: S_1 \cup S_2$.556+	.468+	.514+	.293*
	$S_5: S_1 \cup S_3$.526+	.446+	.487+	.188

• Outliers (effectiveness prediction)

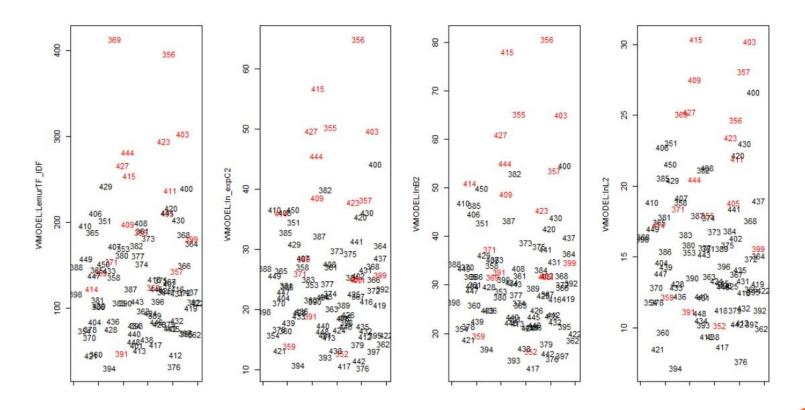


• Multi-variate outliers detection



LemurTF_IDF.Max

• Multi-variate outliers detection



• Multi-variate outliers detection

Collection	WT10G	WT10G	TREC78	TREC78	Collection	WT10G
Measure	NDCG	AP	NDCG	AP	Measure	NDCG
Best system	0.444	0.236	0.524	0.238	Ref system	0.4528
Ouliers	16	16	19	18	Outliers	24
LemurTF_IDF - Univariate	0.337	0.342	0.544	0.658	NQC - No Outliers	0.330
LemurTF_IDF - Outliers only	0.206	0.292	0.095	0.350	NQC - All	0.097
LemurTF_IDF - No Ouliers	0.438	0.468	0.601	0.700	UQC - No Ouliers	0.350
LemurTF_IDF - All	0.365	0.393	0.381	0.522	UQC - All	0.206
In_expC2 Univariate	0.423	0.368	0.607	0.631	WIG - No Outliers	-0.015
In_expC2 - No Outliers	0.391	0.350	0.607	0.635	WIG - All	0.077
ln_expC2 - All	0.425	0.371	0.418	0.484	QF - No Ouliers	0.357
InB2 - Univariate	0.329	0.286	0.542	0.536	QF - All	0.283
InB2 - No Outliers	0.286	0.214	0.530	0.543		
InB2 - All	0.336	0.274	0.372	0.416		
InL2 - Univariate	0.264	0.341	0.380	0.426		
InL2 - No Outliers	0.258	0.347	0.458	0.491		
InL2 - All	0.340	0.353	0.398	0.446		

31

Main research directions

- Query difficulty prediction
- Adaptive system / selective query processing
- User studies

What are the most influential system parameters

• Descriptive analysis of results

Mining Information Retrieval Results: Significant IR parameters

J. Compaoré, S. Déjean, A.-M. Gueye, J. Mothe, J. Randriamparany The First International Conference on Advances in Information Mining and Management - IMMM 2011

Studying the variability of system setting effectiveness by data analytics and visualization.

Déjean, S., Mothe, J., & Ullah, M. Z. (2019).

In Experimental IR Meets Multilinguality, Multimodality, and Interaction: 10th International Conference of the CLEF Association, CLEF 2019, Lugano, Switzerland, September 9–12, 2019, Proceedings 10 (pp. 62-74). Springer International Publishing.

CLEF, Déjean et al., 2019

What are the most influential system parameters

Parameters	Meaning	Values
Тор	Topic number	351,, 400
Field	Topic field	T, T+D, T+D+N
Bloc	Size of the indexing bloc	1, 5, 10
ldf	Inverse Document Frequency	FALSE, TRUE
Ref	Query reformulation	None, Bolbfree, Bo2bfree, KLbfree
Model	Retrieval model	BB2c1, BM25b0.5, DFRBM25c1.0, IFB2c1.0, InexpB2c1.0, InexpC2c1.0, InL2c1.0, PL2c1.0, TFIDF
DocNb	Number of documents (reformulation)	0, 3, 5, 10, 50, 100, 200
qe_md	Minimum number of documents in which the term should appear to used in the query expension	0, 2
qe_t	Number of terms used in the query expension	0, 1

34

What are the most influential system parameters

• Data

98650 rows: 1 row = one topic processed by a chain of modules 8 columns: 7 parameters + 1 performance measure (map)

#	т	op	Field	Bloc	Idf	Ref	Weight	DocNb	map
1	35	51	Т	1	false	Bolbfree	BB2c1.0	3	0.6134
2	35	52	Т	1	false	Bolbfree	BB2c1.0	3	0.3412
3	35	53	Т	1	false	Bolbfree	BB2c1.0	3	0.3479
4	35	54	Т	1	false	Bolbfree	BB2c1.0	3	0.0662
5	35	55	Т	1	false	Bolbfree	BB2c1.0	3	0.2794
6	35	56	т	1	false	Bolbfree	BB2c1.0	3	0.0460
000		_		0		Nor		1	0 1514
986	45 44	5	Т	0	true	NONE	TFIDF	1	0.1514
986	46 44	6	т	0	true	NONE	TFIDF	1	0.2234
986	47 44	7	Т	0	true	NONE	TFIDF	1	0.1121
986	48 44	8	т	0	true	NONE	TFIDF	1	0.0114
986	49 44	9	т	0	true	NONE	TFIDF	1	0.0714
986	50 45	0	Т	0	true	NONE	TFIDF	1	0.3226

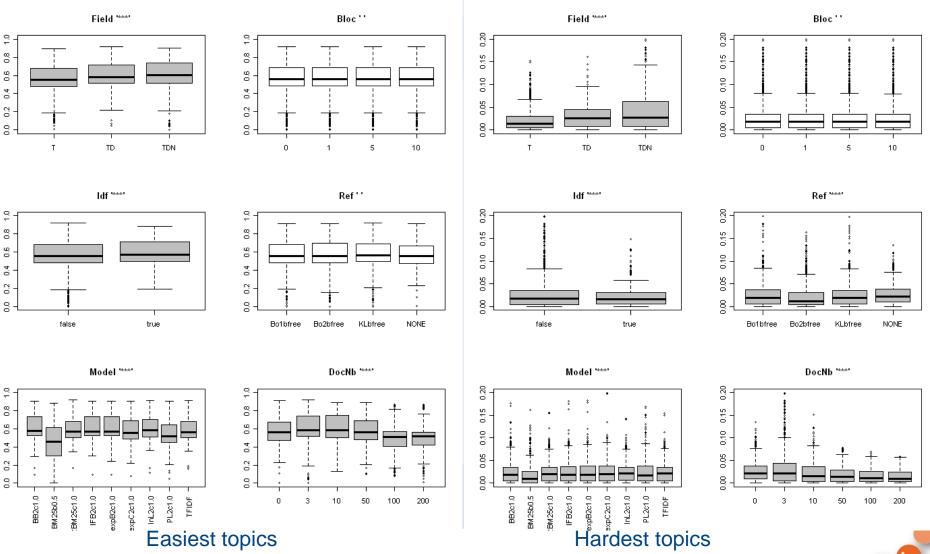
35 111

CLEF, Déjean et al., 2019

What are the most influential system

parameters

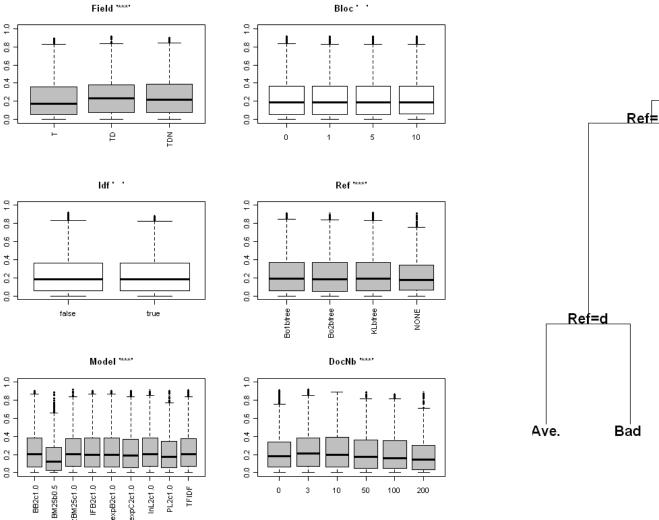
Significant effect (1-factor ANOVA)

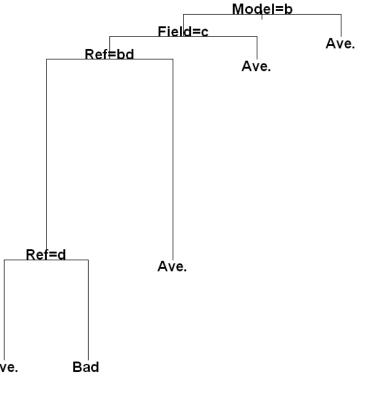


İRIT

CLEF, Déjean et al., 2019

What are the most influential system parameters





า้เราท

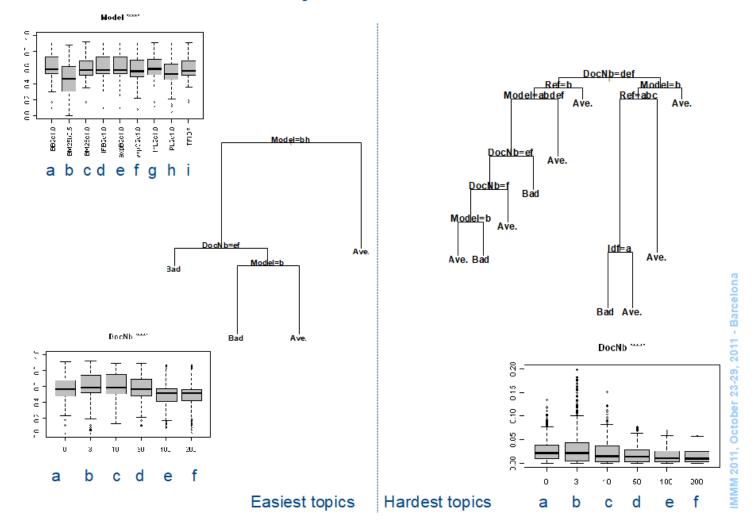
CLEF, Déjean et al., 2019

What are the most influential system parameters

Multivariate analysis : CART

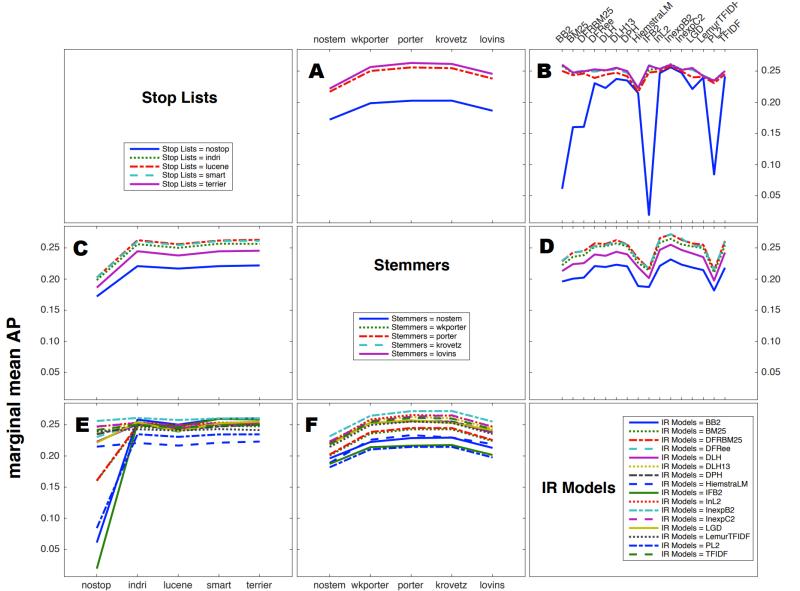
Classification And Regression Tree

TIRIT



Ferro, SIGIR 2018

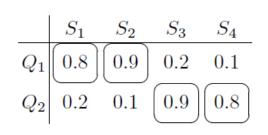
What are the most influential system parameters



ŤRI

Selective query processing strategies

- Observations on IR system
 - Systems perform differently on queries
 - One size does not fit all



1 Configuration c1 ♦ Configuration c2 0.9 ▲ Configuration c3 0.8 0.7 Effectiveness 0.6 0.5 0.4 0.3 0.2 0.1 0 2 3 5 7 0 1 6 Query

- Solution
 - Selective search strategy
 - Different systems or system configurations are used for different queries

Selective query processing strategies

• Early methods

- Selective query expansion
 - [Cronen-Townsend et al., 2004] [Amati, 2003] [Yom-Tov et al., 2005]
 Decide whether a query should be expanded

Effectiveness is limited to two configurations

• [Xu et al., 2009]

Different types of expansion according to queries

The performance is still bounded by the three expansion strategies used

- Model selection
 - [He and Ounis, 2004]

Best matched query-cluster to select the search model

The performance is also limited to those search models (8)

Selective search strategies

More recently

- Selective search model approach
 - [Arslan and Dincer, 2019]

Used the frequency distribution of query terms to select the best search models Performance improved than SQE but limited to the search models

- Selective search based on various configurations
 - [Mothe and Washha, 2017]

Predicts the best value for a set of system parameters for a query – classifierbased approach

Does not consider the dependency of the parameters

Which System to use to process a query?

- Parameter values make different system configurations
- Effectiveness differs according to configurations
- Can we learn the configuration to use?
- Icearning to rank query-documents -> L2R query-configurations
- E-risk based function

Learning to Rank System Configurations

Romain Deveaud, Josiane Mothe, Jian-Yun Nie. Conference on Information and Knowledge Management (CIKM), 2016.

Predicting the Best System Parameter Configuration: the (Per Parameter Learning) PPL method

Josiane Mothe, Mahdi Washha International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES), Elsevier, 2017.

Defining an Optimal Configuration Set for Selective Search Strategy-A Risk-Sensitive Approach

Mothe, J., & Ullah, M. Z. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management (pp. 1335-1345), 2021

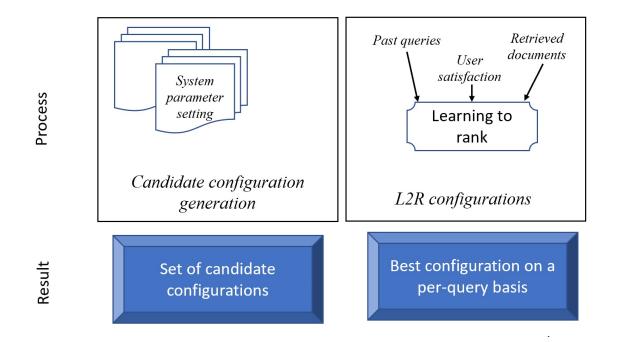
Selective search strategies

• [Deveaud et al, 2018]

Learning to rank system configurations

20 000 configurations : A specific setting of an ensemble of components and their hyper-parameters

e.g. BM25 with Bo2 query expansion using 5 documents and 10 query terms



• System parameters

Table 1: Description of the system parameters that	
we use to build our dataset	

Parameter	Description & values ²
Retrieval model	21 different retrieval models: Dirich- letLM, JsKLs, BB2, PL2, DFRee, DFI0, XSqrAM, DLH13, HiemstraLM, InL2, DLH, DPH, IFB2, TFIDF, InB2, InexpB2, DFRBM25, BM25, LGD,
Expansion model	LemurTFIDF, InexpC2. 7 query expansion models: nil, Roc- chio, KL, Bo1, Bo2, KLCorrect, Infor-
Expansion documents	mation, KLComplete. Number of documents used for query expansion: 2, 5, 10, 20, 50, 100.
Expansion terms	Number of expansion terms: 2, 5, 10, 15, 20.
Expansion min-docs	Minimal number of documents an ex- pansion term should appear in: 2, 5, 10, 20, 50.

• Training examples

- Query-configurations with effectiveness as label
- Query: set of features (query difficulty predictors)
 - Linguistics based
 - Statistics based
- Machine learning methods
 - Train to know what is the best system configuration according to query features

Table 2: Results with different L2R models and feature ablations. \triangle indicates statistically significant improvements over the Grid Search baseline, according to a paired t-test (p < 0.05). \forall indicates statistically significant decreases induced by a feature ablation with respect to the corresponding (All) models.

	MAP	P@100	RPrec
BM25 Grid Search	0.1942 0.2480	0.1719 0.2213	0.2330 0.2835
Random Forests (All)	0.3319	0.2785	0.3439
- QueryStats	0.3180 ^ (-4.17%		$0.3658 \land (+6.35\%)$
- QueryLing	$0.3367 \stackrel{\wedge}{-} (+1.43)$	P	$0.3507 \ ^{\wedge} \ (+1.96\%)$
- RetModel	0.3210 △ (-3.28%	b) 0.2746 (-1.44%)	$0.3462 \triangleq (+0.65\%)$
- Expansion	0.2201 (-33.68)	%) 0.1843 [▼] (-33.84%)	0.2384 (-30.69%)
SVM ^{rank} (All)	0.3073 [△]	0.2529	0.3204
- QUERYSTATS	0.2820 4 (-8.23%	(+5.48%) 0.2667 $(+5.48%)$	$0.3304 \triangleq (+3.12\%)$
- QueryLing	0.2918 4 (-5.03%	/ / / / / /	$0.3498 ^{(+9.19\%)}$
- RetModel	0.3118 ^ (+1.48		$0.3400 \land (+6.10\%)$
- Expansion	0.1723 (-43.92		0.1914 (-40.28%)
GBRT (All)	0.3338 △	0.2803 ^	0.3400 ^Δ
- QueryStats	0.3375 △ (+1.11		0.3275 [△] (-3.71%)
- QueryLing	0.2982 △ (-10.68	· · · · · · · · · · · · · · · · · · ·	0.3288 ^ (-3.31%)
- RetModel	0.3299 △ (-1.17%		0.3581 (+5.32%)
- EXPANSION	0.2345 (-29.75)		0.2505 (-26.32%)
LambdaMART (All)	0.3271 ^(A)	0.2772 ^	0.2873
- QUERYSTATS	0.3272 ^ (+0.03		0.2692 (-6.28%)
- QueryLing	0.3324 △ (+1.62)		0.3486 △ (+21.34%)
- RETMODEL	0.3144 4 (-3.87%		$0.3528 \triangleq (+22.78\%)$
- EXPANSION	0.2188 (-33.11)	/ / /	0.2078 (-27.67%)
			, , ,
Upper bound (oracle performance)	0.4136	0.3434	0.4490

Learning to rank system configurations

Table 2: Results with different L2R models and feature ablations. \triangle indicates statistically significant improvements over the Grid Search baseline, according to a paired t-test (p < 0.05). \checkmark indicates statistically significant decreases induced by a feature ablation with respect to the corresponding (All) models.

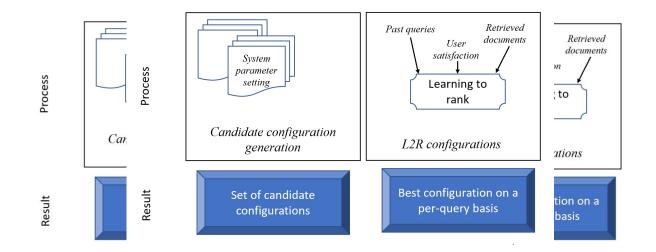
	MAP	RPrec
BM25	0.1942	0.2330 0.2835
Grid Search	0.2480	0.3439 [△] 0.3658 [△] (+6.35%)
GBRT (All) - QueryStats - QueryLing - RetModel - Expansion	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{ccccccc} 0.3507 & ^{\wedge} & (+1.96\%) \\ 0.3462 & ^{\wedge} & (+0.65\%) \\ 0.2384 & (-30.69\%) \\ 0.3204 \\ 0.3304 & ^{\wedge} & (+3.12\%) \\ 0.3498 & ^{\wedge} & (+9.19\%) \\ 0.3400 & ^{\wedge} & (+6.10\%) \\ 0.1914 & (-40.28\%) \end{array}$
GBRT (All) - QueryStats - QueryLing - RetModel - Expansion	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 0.3400 & ^{\vartriangle} & \\ 0.3275 & ^{\vartriangle} & (-3.71\%) \\ 0.3288 & ^{\vartriangle} & (-3.31\%) \\ 0.3581 & ^{\circlearrowright} & (+5.32\%) \\ 0.2505 & (-26.32\%) \end{array}$
LambdaMART (All) - QueryStats - QueryLing - RetModel - Expansion	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 0.2873 \\ 0.2692 & (-6.28\%) \\ 0.3486 & (+21.34\%) \\ 0.3528 & (+22.78\%) \\ 0.2078 & (-27.67\%) \end{array}$
Upper bound (oracle performance)	0.4136 0.3434	0.4490

- Selective search strategy (SSS)
 - Number of possible configurations is very large
 - Too many configurations are difficult to maintain
 - Some configurations are good for a few queries
 - Some configurations could be risky for important queries

CIKM 2021

- Objective
 - Select a representative set of system configurations
- Solution
 - Random selection poor [Deveaud et al, 2018]
 - Advanced selection

Selection of a limited number of configurations



50

Selection of a limited number of configurations

- from the initial pool
- for the selective search strategy

Selection of a limited number of configurations

- Greedy approach
- Iteratively selects one representative configuration at a time

 We used risk and reward functions to select the reduced set of candidate configurations

CIKM 2021

Risk-sensitive criteria

- Risk-averse ranking algorithm considering mean-variance analysis of a ranked list [Wang and Zhu, 09]
- **Risk-reward trade-off function Urisk** based on Frisk to optimize learning to rank model [Wang et al, 2012]
- Student's T-distribution-wise risk-reward trade-off function Trisk
 [Dincer et al., 2014]
- Zrisk and Grisk to compare the risk-reward trade-off of a system against multiple baselines [Dincer et al., 2016]
- Risk-reward trade-off in rank fusion [Benham et al, 2017]
- Risk functions for feature selection in learning to rank documents [De Sousa et al., 2016]

CIKM 2021

Risk sensitive criteria to select candidate configurations

- Definition of System Risk
 - The risk of performing a given particular query less effectively than a given baseline system
- F_{RISK} is defined as follows:

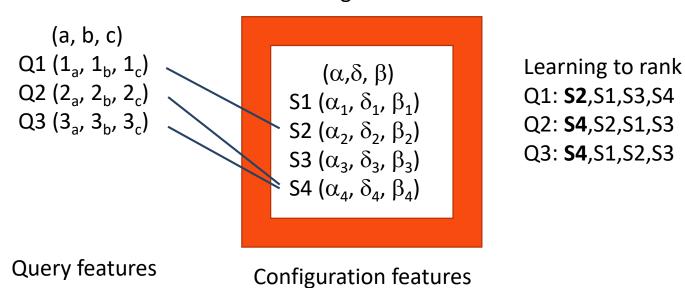
$$F_{Risk}(Q_T, M) = \frac{1}{|T|} \sum_{q_i \in Q_T} \max(0, B(q_i) - M(q_i))$$

- \circ Q_T is the training query set
- \circ B(q_i) is the baseline effectiveness for query q_i, and
- M(q_i) is the effectiveness of the model for which the risk is estimated

Model design

Best Query-Configuration Fit

- For each query, select the most appropriate configuration
- Cast as a problem of ranking the candidate configurations



Set of configurations

Model design

Query Features (the (a,b,c))

- Summarized LETOR features based on BM25
 - 38 LETOR features [Adrian et al., 2018]
 - Aggregated functions
 - Mean, Standard deviation, and Maximum

• Configuration features (the (α, δ, β))

- 21 retrieval models
- 7 expansion models
- 6 variants of number of expansion documents
- 5 variants of number of expansion terms
- 5 variants of minimum number of expansion documents

Model design

Training based on

- Query-System configuration pairs + label (effectiveness)
- Learning-to-rank algorithms for point-wise, pairwise, and listwise approaches

RankLib library

Random Forest, GBRT, and LambdaMART

SVM-rank library

- SVMrank
- Scikit-learn
 - Linear regression

Experiments and evaluation

• Test collections

- TREC78 -- 100 Topics (351 450)
- WT10G -- 100 Topics (451 550)
- GOV2 -- 150 Topics (701 850)
- Metrics
 - AP, nDCG@10, and P@10
- Evaluation
 - Two-fold cross-validation for three trials (Q_A and Q_A⁻)

Significance testing

- Two-tailed paired t-test with Bonferroni correction
 - P-value < 0.05

Experiments and evaluation

Baselines

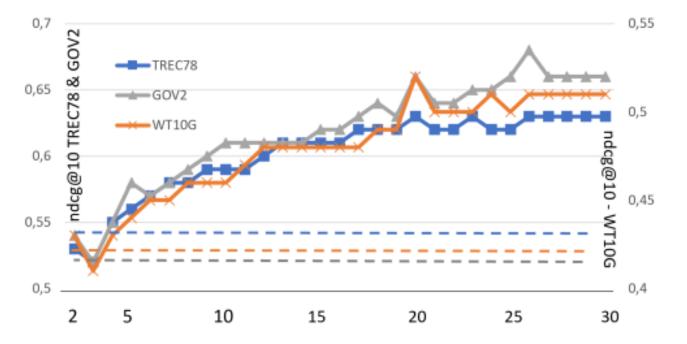
- Single Configuration
 - BM25
 - L2R-D SVM-rank
 - Grid Search
 - Best trained
- Selective Search Strategy
 - Trained SQE
 - Deveaud et al. [2018]

Oracles

- Best Conf.
- Oracle20SS
- Oracle

Results

• Impact of k on effectiveness and cost:



Performance for E_{RISK} function on the three collections while varying the number of candidate configurations. The dotted dash horizontal lines are the single best configuration

59 IRIT

Results

- Effectiveness on TREC78 with 20 candidate configurations by $\mathrm{E}_{\mathrm{RISK}}$ function

			TREC78	
	Methods	MAP	nDCG@10	P@10
B	BM25	.21	.47	.43
ase	L2R-D SVM ^r	.22 [.000]	.48 [.001]	.46 [.004]
Baselines	GS	.24 [.003]	.51 [.019]	.47 [.003]
es	Best trained	.25 [.010]	.52 [.008]	.47 [.009]
SelSS	Trained SQE	.24 [.002]	.53 [.007]	.49 [.006]
SSI	Deveaud et al. [16]	.24 [.002]	.56 [.003]	.52 [.004]
	ERisk-RF	.28 ^{△↑} [.007]	.63 ^{△↑} [.005]	.60 ^{∆↑} [.012]
_	Best conf.	.26	.54	.51
	Oracle	.39	.83	.80
	Oracle20SS	.29	.63	.61

Results

- Effectiveness on GOV2 with 20 candidate configurations by $E_{\mbox{\scriptsize RISK}}$ function

	1445	DOOOLA	D O I O
Methods	MAP	nDCG@10	P@10
		GOV2	
BM25	.27	.46	.54
L2R-D SVM ^r	.28 [.001]	.49 [.002]	.57 [.003]
GS	.35 [.005]	.52 [.003]	.62 [.008]
Best trained	.35 [.005]	.49 [.012]	.59 [.010]
Trained SQE	.35 [.009]	.52 [.002]	.63 [.005]
Deveaud et al. [16]	.40 [.003]	.66 [.001]	.77 [.005]
ERisk-RF	.41 [△] [.002]	.67 [△] [.002]	.79 [△] [.010]
Best conf.	.36	.52	.63
Oracle	.50	.85	.94
Oracle20SS	.42	.68	.80
	L2R-D SVM ^r GS Best trained Trained SQE Deveaud <i>et al.</i> [16] ERisk-RF Best conf. Oracle	BM25 .27 L2R-D SVM ^r .28 [.001] GS .35 [.005] Best trained .35 [.005] Trained SQE .35 [.009] Deveaud et al. [16] .40 [.003] ERisk-RF .41 ^{\triangle} [.002] Best conf. .36 Oracle .50	GOV2BM25.27.46L2R-D SVMr.28 [.001].49 [.002]GS.35 [.005].52 [.003]Best trained.35 [.005].49 [.012]Trained SQE.35 [.009].52 [.002]Deveaud et al. [16].40 [.003].66 [.001]ERisk-RF.41^{\Delta} [.002].67^{\Delta} [.002]Best conf36.52Oracle.50.85

Main research directions

- Query difficulty prediction
- Adaptive systems
- User studies

Human-Based Query Difficulty Prediction: Is There Any Hope?

- Can we learn something from human?
- From the crowd ? From labs?

mbq.irit.fr

-	memational	rganized Crime			
This query is:					
This query is: Very easy	Easy	Average	Difficult	Very difficult	l don't know / Not applicable

Human studies

• TREC 7 & 8 (old data)

- Crowd: No correlation
- Lab (students in libraries): No correlation
- While little correlation with IDF (0.5) and STD (0.6)

#	Participants	Scale	Collection	# of topics	Metrics	Amount of info	Explanations	Topics
El	Crowd (IN + US) 120 (60 + 60)	3	TREC 6-8	30	AP	Q, Q+D	Free text	310 311 312 313 314 315 316 351 352 353 354 355 356 357 358 360 403 404 406 414 420 421 422 424 426 427 428 430 433 434
E2	Lah 38 (29 + 9)	3	TREC 6-8	91 (*)	AP	Q, Q+D	Free lext (**)	321-350 in TREC 6, 351-381 in TREC 7, 421- 450 in TREC 8 (*)
E3	Crowd (IN, US) 100 (50 + 50)	5	TREC 2014	25	ERR@20 NDCG@20	Q, Q+D	Free lext	251 255 259 261 267 269 270 273 274 276 277 278 282 284 285 286 287 289 291 292 293 296 297 298 300
E4	Lab 22	5	TREC 2014	25	ERR@20 NDCG@20	Q, Q+D	Categories (**) + Free text	Same as H3

Human studies

- TREC 2012 (web data)
 - Crowd: Little correlation (0.4)
 - Lab (IRIT + others): no correlation
 - While no correlation with IDF and little with STD (0.4)

#	Participants	Scale	Collection	# of topics	Metrics	Amount of info	Explanations	Topics
El	Crowd (IN + US) 120 (60 + 60)	3	TREC 6-8	30	AP	Q, Q+D	Free text	310 311 312 313 314 315 316 351 352 353 354 355 356 357 358 360 403 404 406 414 420 421 422 424 426 427 428 430 433 434
E2	Lah 38 (29 + 9)	3	TREC 6-8	91 (*)	AP	Q, Q+D	Free lext (**)	321-350 in TREC 6, 351-381 in TREC 7, 421- 450 in TREC 8 (*)
E3	Crowd (IN, US) 100 (50 + 50)	5	TREC 2014	25	ERR@20 NDCG@20	Q, Q+D	Free lext	251 255 259 261 267 269 270 273 274 276 277 278 282 284 285 286 287 289 291 292 293 296 297 298 300
E4	Lab 22	5	TREC 2014	25	ERR@20 NDCG@20	Q, Q+D	Categories (**) + Free text	Same as E3

- Can human predict difficulty?
 - No [Hauff et al., 2010] [Mizzaro & Mothe, 2016]
- Difficulty Reasons:
 - Why is a query difficult?
 - Can human identify the reasons?
 - Do reasons correlate to automatic predictors?
- Amount of information:
 - Do description change the difficulty prediction? (compared to the query only)
- Links with actual system difficulty

Why do you Think this Query is Difficult? A User Study on Human Query Prediction

Stefano Mizzaro, Josiane Mothe. ACM SIGIR, 2016.

Human-Based Query Difficulty Prediction

Adrian-Gabriel Chifu, Sébastien Déjean, Stefano Mizzaro, Josiane Mothe

European Colloquium on Information Retrieval (ECIR), 2017.

- Aim: what are the reasons?
- Participants: 39 MS (library and teaching studies)
- Choose among 150 topics (TREC adhoc)
- Evaluate difficulty (3 levels scale)
 + free text explanation

easy because:
difficult because:

• First using T, then using T+D

Annotation analysis

• Recoding free text

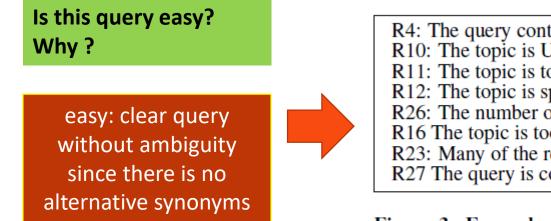
Comment	Recoding
A single word in the query The term exploration is polysemous	One-Word
Far too vague topic	Too-Vague-Topic
Is it in US? Elsewhere? Few searches on this topic	Missing-Where Unusual-Topic
Risk of getting too many results There are many documents on this	Too-Many-Documents Many-Documents

Table 2. Most frequent: (a) words in free text comments; (b) comments after recoding.

(a)			(a)					
Easy because Difficult bec		Difficult beca	nuse	Easy because		Difficult because		
Precise	113	Missing	64	Precise-Topic	66	Risk-Of-Noise	50	
Clear	48	Broad	62	Many-Documents		Broad-Topic	43	
Many	45	Risk	56	No-Polysemous-Word			34	
Polysemous	36	Context	34	Precise-Words		Polysemous-Words		
Usual	16	Polysemous	33	Clear-Query		Several-Aspects	20	
Specialist	15	Vague	26	Usual-Topic		Missing-Where	16	
Simple	11	Many	21			- intere		

TIRIT

• Master students in libriary studies



R4: The query contains generic word(s)
R10: The topic is Unusual/uncommon/unknown
R11: The topic is too broad/general/large/vague
R12: The topic is specialized
R26: The number of query words is too high
R16 The topic is too precise/specific/focused/delimited/clear
R23: Many of the relevant documents will be retrieved
R27 The query is concrete/explicit

Figure 3: Examples of reasons resulting from the recoding of free text annotation on query difficulty comments.

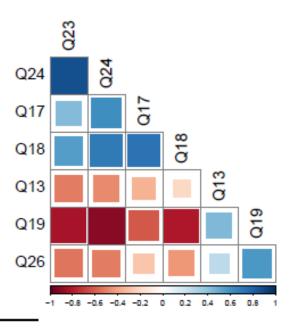
ECIR 2017

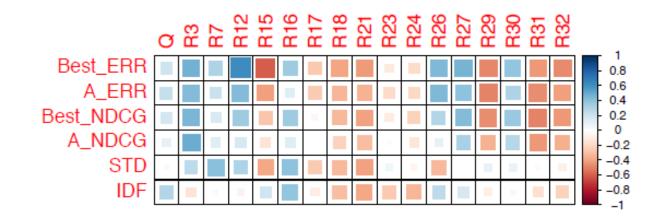
CloseD-questions as reasons

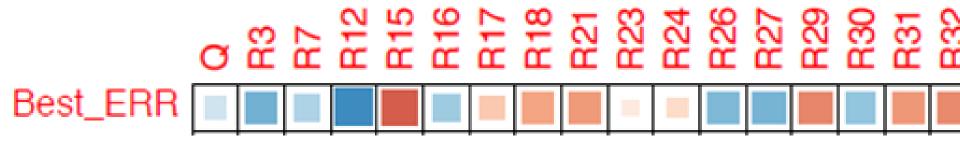
- Reasons as 32 closed-questions (ClueWeb12)
- 25 topics (10 hard, 10 easy, 5 avg), 22 part.
- 8 annotations per topics (5-levels scale for difficulty + Questions)

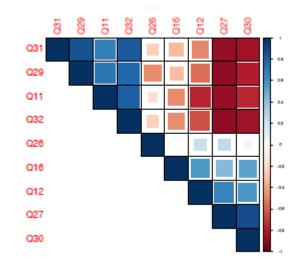
Question

- Q1: The query contains vague word(s)
- Q3: The query contains word(s) relevant to the topic/query
- Q10: The topic is unusual/uncommon/unknown
- Q13: The topic has several/many aspects
- Q17: The topic is usual/common/known
- Q18: The number of documents on the topic in the web is high
- Q19: None or very few relevant documents will be retrieved
- Q20: Only relevant documents will be retrieved
- Q23: Many of the relevant documents will be retrieved
- Q24: Many relevant documents will be retrieved
- Q26: The number of query words is too high
- Q28: The query contains various aspects
- Q30: The query is clear









TIRIT

R12: The topic is specialized R26: The number of query words is too high R16 The topic is too precise/specific/focused/delimited/clear R27 The query is concrete/explicit

Table 4: Pearson's correlations between actual system effectiveness, automatic predictors and reasons. Bold indicates a p-value < 0.05, * <0.005.

	Best ERR	TREC AERR	Best NDCG	TREC ANDCG	STD	IDF
STD	0.335	0.171	0.438	0.450	1*	0.087
IDF	0.209	0.133	0.296	0.178	0.087	1*
R12	0.622*	0.436	0.359	0.180	0.302	-0.066
R16	0.349	0.140	0.345	0.137	0.393	0.390
R26	0.445	0.447	0.295	0.101	-0.321	0.261
R27	0.460	0.409	0.434	0.323	-0.005	0.171

Close questions analysis

Correlation with human « prediction »

ŀ	teason	Correlation Q Q+D
None	R2: The query contains polysemous/ambiguous word(s) R8: The words in the query are inter-related or complementary R12: The topic is specialized	0.342 0.145 -0.028 0.187 -0.103 -0.136
	R10: The topic is Unusual/uncommon/unknown	0.526 0.496
Some	R13: The topic has several/many aspects R19: None or verv few relevant document will be retrieved R30: The query is clear	0.614 0.708 0.880 0.800 -0.532 -0.631

Some reasons clearly correlate with the perception of difficulty.

S/he predicts the query difficult when:

- The topic has several aspects
- S/he has a idea on the number of retrieved documents
- The query is not clear

Close questions analysis

• Link system query features and human reasons

18	3	11	23	-6	-2	-3	7	5	10	-14	-7	6	-23	-15	32	1	7	11	7	-39	11	3	1	-8	26	17	11	-9	4	-16	2	avg_idf
20	14	-13	-1	17	12	-15	-31	-2	9	29	0	-19	3	-56	-38	15	-11	18	11	-13	21	16	16	14	20	-21	5	9	-14	23	-22	hypernyms
20	14	-13	-1	17	12	-15	-31	-2	9	29	0	-19	3	-56	-38	15	-11	18	11	-13	21	16	16	14	20	-21	5	9	-14	23	-22	meronyms
-23	3 -22	2 27	-45	8	11	42	12	-39	-16	-9	30	6	-33	-15	28	-40	-10	-6	-13	-40	-27	-6	-8	-35	-32	-1	2	9	9	2	0	STD
32	33	5	6	-21	-21	-31	29	20	14	11	-18	20	-28	13	23	15	21	0	7	36	8	-5	-6	55	15	-20	-4	9	-24	17	25	hyponyms
45	43	-7	8	-54	-54	-15	18	13	-9	20	-29	-12	-22	8	10	-5	18	-24	6	8	-13	-31	-32	28	9	-22	-42	22	-34	18	12	sister.terms
39	41	-14	-3	-62	-70	-2	18	-3	-29	24	-21	-27	-15	12	6	-22	7	-34	17	14	-30	-36	-36	16	-5	-32	-62	34	-37	35	17	synonyms
19	36	9	-27	-42	-47	-1	-8	-27	-6	41	-25	-41	-17	8	-10	-16	-4	-76	-52	1	-23	-76	-75	-5	-40	-53	-51	62	-41	44	-9	holonyms
R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18	R19	R20	R21	R22	R23	R24	R25	R26	R27	R28	R29	R30	R31	R32	

Some reasons clearly correlate with query features

The number of holonyms seems related to the predicted number of retrieved documents [many document when many parts]

- The variety of aspects (R28) and synonyms [topic ambiguity]
- Specialization (R6) and synonyms [few senses when specialized]

Close questions analysis

• Links between reasons and percieved difficulty/actual difficulty

Question	Correl.
Q1: The query contains vague word(s)	.5230
Q3: The query contains word(s) relevant to the topic/query	41 .43
Q10: The topic is unusual/uncommon/unknown	.52 .26
Q13: The topic has several/many aspects	.61* 07
Q17: The topic is usual/common/known	.62*25
Q18: The number of documents on the topic in the web is high	n 69 *34
Q19: None or very few relevant documents will be retrieved	.88 * .32
Q20: Only relevant documents will be retrieved	47 .09
Q23: Many of the relevant documents will be retrieved	86 *20
Q24: Many relevant documents will be retrieved	87 *21
Q26: The number of query words is too high	.62* .45
Q28: The query contains various aspects	.4612
Q30: The query is clear	53 .30

While some reasons clearly correlate with human perception of difficulty, they are poor indicator of actual difficulty.

Conclusion

- Human can not predict query difficulty
- Reasons of difficulty make sense to them

No need to ask them

Use this when :

Designing system

Training users

- Enlarge the panel
- Various level of system/domain knowledge
- Compute features on *human* reasons

Future work

General conclusion

Query difficulty prediction

- Still not solved
- Too many factors, including users
- Evaluation is better with performance prediction than correlation with effectiveness
- Adaptive systems
 - Face real application constraints
 - User studies
 - Many hope to find cross effects

General conclusion

- Descriptive analysis
 - Help understanding
 - Help discovering unknown trends
 - Calculations and visualisations are complementary
 - Methods should be used when appropriate
- Machine Learning
 - Extract models to predict
 - Evaluation is crutial

www.irit.fr/~Josiane.Mothe

Josiane.mothe@irit.fr