# Études quantitatives manuelles : problèmes d'échantillonnage dans les analyses métalexicographiques

UE TAL Toulouse - 4/12/2023

Franck Sajous CLLE (CNRS & Université de Toulouse 2)







#### \_\_\_\_

**CONTEXTE** 

Lexicographie, métalexicographie(s) et méthodologies





#### lexicographie [IEksikografi] n. f.

Étude scientifique et analytique des faits de lexique d'une langue et de ses variétés dans le but de produire un dictionnaire.

Lexicographie française, québécoise.

Lexicographie bilingue.

TLF

#### **ÉTYMOLOGIE**

1757; de lexico- et -graphie.



#### lexicographie [leksikəgrafi] nom féminin

ÉTYM. 1757 ◊ de lexicographe



■ LING. Travail et technique du lexicographe ; recensement et étude des mots et des expressions d'une langue déterminée, considérés dans leurs formes et leurs significations



#### lexicographie [leksikografi] n. f.

Étude scientifique et analytique des faits de lexique d'une langue et de ses variétés dans le but de produire un dictionnaire.

Lexicographie française, québécoise.

Lexicographie bilingue.

TLF

#### ÉTYMOLOGIE

1757; de lexico- et -graphie.



#### lexicographie [leksikəgrafi] nom féminin

ÉTYM. 1757 ◊ de lexicographe



■ LING. Travail et technique du lexicographe; recensement et étude des mots et des expressions d'une langue déterminée, considérés dans leurs formes et leurs significations (→ dictionnaire). Lexicographie et lexicologie\*.

#### Wiktionnaire Le dictionnaire libre

Étymologie [modifier le wikicode]

(Date à préciser) Dérivé de lexicographie, avec le préfixe méta-.

Nom commun [modifier le wikicode]

#### métalexicographie \me.ta.le.ksi.ko.gga.fi\ féminin

- 1. (Linguistique) Discipline qui étudie les méthodes et les principes guidant la création de dictionnaires.
  - Nous ne retracerons pas ici les différents stades de l'évolution de la **métalexicographie** monolingue. — (Witold Ucherek, Les articles prépositionnels en lexicographie bilingue français-polonais, 2019)

#### Invariable

métalexicographie \me.ta.le.ksi.ko.gra.fi\

#### Une variété d'activités/de sous-disciplines

metalexicography, lexicographic research, academic lexicography, dictionary research, theory of lexicography/theoretical lexicography, dictionary criticism/dictionary review, user research (user skills + user needs)

"it can be used by different authories to refer to potentially quite different things" (Hartmann, 2001, p. 28)

"The word metalexicography [...] is now frequently used to refer to the activities of anyone who writes about lexicography but does not write dictionaries" (Béjoint, 2000, p. 8)

#### Une variété d'activités/de sous-disciplines

metalexicography, lexicographic research, academic lexicography, dictionary research, theory of lexicography/theoretical lexicography, dictionary criticism/dictionary review, user research (user skills + user needs)

"it can be used by different authories to refer to potentially quite different things" (Hartmann, 2001, p. 28)

"The word *metalexicography* [...] is now frequently used to refer to the activities of anyone who writes about lexicography but does not write dictionaries" (Béjoint, 2000, p. 8)

#### Définition maison (de la métalexicographie que je pratique)

Discipline qui consiste à étudier (décrire, analyser, évaluer, comparer) les dictionnaires et/ou leur processus de création... indépendamment d'une visée particulière

## (R)évolutions lexicographiques

#### Évolutions théoriques, technologiques et économiques

- révolution descriptive (Trap-Jensen, 2018)
- numérisation des dictionnaires papiers, rétroconversion vers BDD (Nagao et al., 1980; Berg et al., 1988)
- linguistique de corpus (Rundell & Stock, 1992)
   + automatisation par outils de TAL et d'analyse de données (Rundell & Kilgarriff, 2011)
- diversification des supports de publication, mise en ligne (Nesi, 2008)
- pour certains dictionnaires, arrêt de l'impression papier (Rundell, 2014)
- changement de modèle économique (Kilgarriff, 2005)
- apparition de dictionnaires « DIY » et d'agrégateurs (Gao, 2012)
- émergence de la lexicographie dite « collaborative » et des approches par crowdsourcing (Sajous & Josselin-Leray, 2022)

#### Quid de la métalexicographie?

#### Une crise existentielle (de Schryver, 2022)?

lci, questionnement différent (car métalexicographie différente) :

- évolutions de la lexicographie ⇒? changements/remise en cause de la méthode d'analyse métalexicographique
   (∃? méthode d'analyse métalexicographique)
- pour un phénomène à étudier, quel type d'analyse privilégier?
- quel impact du type de dictionnaire étudié sur les possibilités de mise en œuvre?
  - ightarrow analyse dictionnaire numérique pprox analyse dictionnaire papier?

réflexions d'ordre *existentiel* méthodologique : qu'est-ce qu'on fait et, surtout, *pourquoi comment*?

## Quid de la métalexicographie?

#### Une crise existentielle (de Schryver, 2022)?

lci, questionnement différent (car métalexicographie différente) :

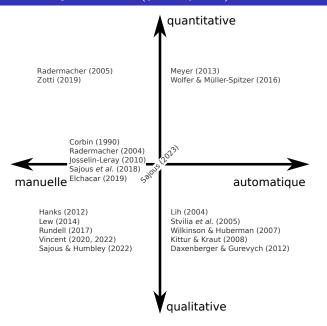
- évolutions de la lexicographie ⇒? changements/remise en cause de la méthode d'analyse métalexicographique
   (∃? méthode d'analyse métalexicographique)
- opour un phénomène à étudier, quel type d'analyse privilégier?
- quel impact du type de dictionnaire étudié sur les possibilités de mise en œuvre?
  - ightarrow analyse dictionnaire numérique pprox analyse dictionnaire papier?

réflexions d'ordre *existentiel* méthodologique : qu'est-ce qu'on fait et, surtout, *pourquoi comment*?

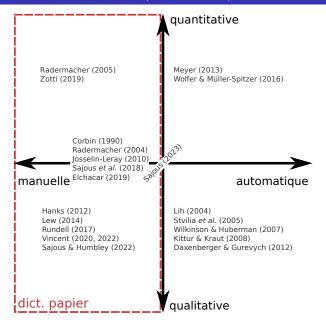
#### Suite de la présentation

- catégorisation des types d'analyse
- problèmes posés par chaque type d'analyse
- en particulier : problèmes posés par l'analyse d'échantillons

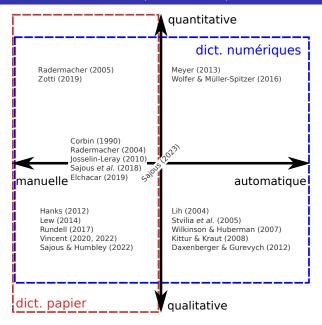
#### MÉTHODES D'ANALYSE


Éléments de classification

#### Méthodes d'analyse


#### Éléments classificateurs retenus

- Nature de l'analyse
  - quantitative vs. qualitative
  - **o** synchronique *vs.* diachronique
- 2 Support du dictionnaire : papier vs. électronique
- Profil des métalexicographes
- Possibilité de mise en œuvre : manuelle vs. automatique


#### Méthodes d'analyse : axes (principaux) de classification



## Méthodes d'analyse : axes (principaux) de classification



## Méthodes d'analyse : axes (principaux) de classification



I - ANALYSES QUALITATIVES
1) manuelles

#### Analyses qualitatives manuelles

#### Analyses portant sur un nombre de cas (très) restreint

- Hanks (2012), Lew (2014), Rundell (2017) qualité des définitions dans Wiktionary
- Vincent (2022)
   traitement de l'entrée woke dans plusieurs dictionnaires
- Sajous & Humbley (2022)
   traitement d'entrées relatives aux mesures d'isolement sanitaire dans
   Wiktionnaire et Wikipédia

#### Qualitatif sans quantitatif : un problème?

#### Non...

- études de cas illustrant des phénomènes observés, éventuellement de manière récurrente
- analyses fines possibles uniquement sur un nombre restreint d'exemples

#### mais:

généralisation impossible à partir des observations

## 2) automatiques

I - ANALYSES QUALITATIVES

## Automatiser des jugements qualitatifs?

#### Démarche heuristique « faute de mieux »

- propriétés qualitatives difficiles à caractériser de manière computationnelle
- établissement *a priori* de critères souvent discutables

#### Exemple : étude de la qualité des articles de Wikipédia/Wiktionary

- Relation avec le taux de révision (Stvilia et al., 2005; Wilkinson & Huberman, 2007; Kittur & Kraut, 2008; Daxenberger & Gurevych, 2012) Études fondées sur les labels de qualité attribués par les contributeurs
  - $\rightarrow$  démarche problématique : évaluation interne, critères de qualité très discutables (Sajous, 2023)
- Métriques dédiées (Stvilia et al., 2005)
  - longueur des articles, « fraîcheur » (currency) de l'information
  - degré de formalité de la langue
    - → fréquence de POS Wikipédia ≈? Columbia Encyclopedia

## Automatiser des jugements qualitatifs?

#### Démarche heuristique « faute de mieux »

- propriétés qualitatives difficiles à caractériser de manière computationnelle
- établissement a priori de critères souvent discutables

#### Exemple : étude de la qualité des articles de Wikipédia/Wiktionary

- Relation avec le taux de révision (Stvilia et al., 2005; Wilkinson & Huberman, 2007; Kittur & Kraut, 2008; Daxenberger & Gurevych, 2012) Études fondées sur les labels de qualité attribués par les contributeurs
  - ightarrow démarche problématique : évaluation interne, critères de qualité très discutables (Sajous, 2023)
- Métriques dédiées (Stvilia et al., 2005)
  - longueur des articles, « fraîcheur » (currency) de l'information
    - $\exists$  « bonne » longueur d'article,  $\forall$  sujet?
    - absence de mise à jour récente = prédicteur de mauvaise qualité?
  - degré de formalité de la langue
    - → fréquence de POS Wikipédia ≈? Columbia Encyclopedia
      - estimation discutable de la formalité de la langue
      - degré de formalité de la langue ⇒ qualité des articles?

#### Automatiser des jugements qualitatifs?

#### Analyses qualitatives automatiques

= études quantitatives qui tentent d'appréhender des caractéristiques qualitatives. . .

```
menées par des informaticien.ne.s. . . qui (souvent) connaissent peu leur objet d'étude et qui (souvent) calculent tout ce qui est calculable
```

- caractérisation de certaines propriétés qualitatives pas toujours automatisable de manière satisfaisante
- indices/prédicteurs calculables pas toujours intéressants / pas toujours pertinents pour caractériser le phénomène étudié

II - ANALYSES QUANTITATIVES
1) automatiques

#### Analyses quantitatives automatiques

#### Principal problème : l'accès aux données

- Wiktionary: dump téléchargeable, sous licence libre (Meyer, 2013; Wolfer & Müller-Spitzer, 2016)
- dictionnaires commerciaux/institutionnels
  - domaine public : OK si numérisé dans format exploitable (e.g. XMLLittré)
  - contemporains : grande ou petite porte?
    - TLFi: convention éventuellement possible avec l'ATILF ERSS / CLLE: depuis 2005
    - Usito: demander poliment, attendre (5 mois), re-demander poliment, être mis en attente, re-attendre (2 ans), puis finalement lire les conditions d'utilisation
- N.B.: accessible en ligne 
   ⇒ copyleft, copyright 
   ⇒ inexploitable
   ⇒ lire les mentions légales!

#### Autres problèmes ( $\approx$ études qualitatives automatiques)

Profil des analystes, choix des observables, interprétations...

II - ANALYSES QUANTITATIVES
2) manuelles

## II - ANALYSES QUANTITATIVES 2) manuelles

#### Mise en œuvre / portée du phénomène étudié

- ensemble restreint d'articles sélectionnés sur critères spécifiques
- globalité du dictionnaire

#### Requêtage via interface de recherche

- systèmes +/- sophistiqués
  - Usito: requêtes sur les vedettes, recherche d'appariement exact et suggestions par complétion automatique
  - TLFi: requêtes multicritères complexes
  - DAF, PR: "recherche avancée", plus de fonctionnalités qu'Usito, plus intuitive (mais moins puissante) que TLFi
- y recourir avec circonspection : pratique lexicographique non systématique/incohérente, codage instable, outils trop frustes
  - e.g. comptage du nb total d'emprunts au français dans l'OED en ligne (Coleman & Ogilvie, 2009) = combinaison de la  $2^e$  et  $3^e$  éditions  $\rightarrow$  alternance de French., Fr. et F. dans la rubrique étymologique. Requête "F." ramène aussi "f." (= from).
  - PR: marque LITTÉR. (= « termes des études littéraires » mais aussi les mots de « la langue écrite élégante »)
     Cohabitation avec LITTÉRATURE et LITT. (non documentées)

#### Recensions internes...

- = listes de (sous-)vocabulaires spécifiques
  - page d'accueil d'*Usito*: POS, particularismes (québécismes et francismes, réalités typiquement québécoises/françaises), anglicismes critiqués, etc.
  - Wiktionnaire : différents types de lexiques (lexique de l'informatique, insultes, termes vieillis, etc.)

#### = danger

macrostructure à partir de laquelle ces listes sont constituées! E.g. : étude sur les appellations des identités de genre non traditionnelles dans les dictionnaires « professionnels et profanes » (Elchacar, 2019)

→ attention aux mécanismes (systématiques ou non) qui sous-tendent la

- comparaison chiffrée des nomenclatures de plusieurs ressources : *GDT* en tête
- (sous-)nomenclature du Wiktionnaire fondée sur son « vocabulaire LGBTIQ »
- 5 des 6 entrées considérées absentes du Wiktionnaire sont présentes lors de l'étude
  - $\rightarrow$  conclusion fausse

#### Sélection par parcours exhaustif de la nomenclature

- Corbin (1990) + 45 étudiants (tous crédités)
  recherche de noms de végétaux en -ier et de leur base apparente
  dans 5 grands dict. généraux monolingues « de langue » et encyclopédiques
  → 249 noms (171 à 201 par dict.) dont les définitions sont ensuite analysées
  (entre 850 et 1000 définitions!)
- Sajous et al. (2018), d'après Martinez (2013)
   examen des 3 334 ajouts aux PR 2008-2017 pour sélectionner les entrées relevant du domaine de l'informatique
  - ightarrow 120 articles à analyser (dont moins de la moitié marqués INFORM.)

#### Sélection par parcours exhaustif de la nomenclature

- Corbin (1990) + 45 étudiants (tous crédités) recherche de noms de végétaux en -ier et de leur base apparente dans 5 grands dict. généraux monolingues « de langue » et encyclopédiques  $\rightarrow$  249 noms (171 à 201 par dict.) dont les définitions sont ensuite analysées (entre 850 et 1000 définitions!)
- Sajous et al. (2018), d'après Martinez (2013)
   examen des 3 334 ajouts aux PR 2008-2017 pour sélectionner les entrées relevant du domaine de l'informatique
  - ightarrow 120 articles à analyser (dont moins de la moitié marqués INFORM.)

#### Sélection sur critères externes

- e.g. nomenclatures de terminologies, recueils de variantes diatopiques, de faux-amis, glossaires d'argot, etc.
- exploitation de corpus, e.g. Josselin-Leray (2010) extraction de 110 termes FR + 110 termes EN à partir d'un corpus bilingue de vulgarisation en volcanologie
  - ightarrow étude de l'inclusion et du traitement dans 2 dicts. FR, 2 EN et 2 bilingues

#### échantillonnage nécessaire...

quantification d'un phénomène sur un nombre restreint d'articles, puis généralisation

#### oui, mais comment?

d'après Bukowska (2010) :

- beaucoup d'énergie consacrée à l'analyse des échantillons
- peu de réflexion accordée aux mécanismes de sélection des échantillons eux-mêmes

#### échantillonnage nécessaire...

quantification d'un phénomène sur un nombre restreint d'articles, puis généralisation

#### oui, mais comment?

d'après Bukowska (2010) :

- beaucoup d'énergie consacrée à l'analyse des échantillons
- peu de réflexion accordée aux mécanismes de sélection des échantillons eux-mêmes

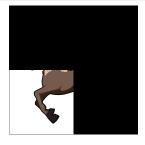
#### ∃ méthodes +/- pertinentes

e.g.: image, échantillon = 25% pixels

#### échantillonnage nécessaire...

quantification d'un phénomène sur un nombre restreint d'articles, puis généralisation

#### oui, mais comment?


d'après Bukowska (2010) :

- beaucoup d'énergie consacrée à l'analyse des échantillons
- peu de réflexion accordée aux mécanismes de sélection des échantillons eux-mêmes

#### ∃ méthodes +/- pertinentes

e.g.: image, échantillon = 25% pixels

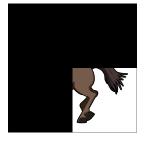
o coin inférieur gauche



#### échantillonnage nécessaire...

quantification d'un phénomène sur un nombre restreint d'articles, puis généralisation

#### oui, mais comment?


d'après Bukowska (2010) :

- beaucoup d'énergie consacrée à l'analyse des échantillons
- peu de réflexion accordée aux mécanismes de sélection des échantillons eux-mêmes

#### ∃ méthodes +/- pertinentes

e.g.: image, échantillon = 25% pixels

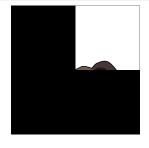
- o coin inférieur gauche
- coin inférieur droit



## échantillonnage nécessaire...

quantification d'un phénomène sur un nombre restreint d'articles, puis généralisation

### oui, mais comment?


d'après Bukowska (2010) :

- beaucoup d'énergie consacrée à l'analyse des échantillons
- peu de réflexion accordée aux mécanismes de sélection des échantillons eux-mêmes

### ∃ méthodes +/- pertinentes

e.g.: image, échantillon = 25% pixels

- o coin inférieur gauche
- o coin inférieur droit
- coin supérieur droit



## échantillonnage nécessaire...

quantification d'un phénomène sur un nombre restreint d'articles, puis généralisation

### oui, mais comment?

d'après Bukowska (2010) :

- beaucoup d'énergie consacrée à l'analyse des échantillons
- peu de réflexion accordée aux mécanismes de sélection des échantillons eux-mêmes

### ∃ méthodes +/- pertinentes

e.g.: image, échantillon = 25% pixels

- o coin inférieur gauche
- o coin inférieur droit
- coin supérieur droit
- coin supérieur gauche



## échantillonnage nécessaire...

quantification d'un phénomène sur un nombre restreint d'articles, puis généralisation

#### oui, mais comment?

d'après Bukowska (2010) :

- beaucoup d'énergie consacrée à l'analyse des échantillons
- peu de réflexion accordée aux mécanismes de sélection des échantillons eux-mêmes

### ∃ méthodes +/- pertinentes

e.g.: image, échantillon = 25% pixels

- coin inférieur gauche
- coin inférieur droit
- coin supérieur droit
- o coin supérieur gauche
- tirage aléatoire



## échantillonnage nécessaire...

quantification d'un phénomène sur un nombre restreint d'articles, puis généralisation

#### oui, mais comment?

d'après Bukowska (2010) :

- beaucoup d'énergie consacrée à l'analyse des échantillons
- peu de réflexion accordée aux mécanismes de sélection des échantillons eux-mêmes

## ∃ méthodes +/- pertinentes

e.g.: image, échantillon = 25% pixels

- o coin inférieur gauche
- coin inférieur droit
- o coin supérieur droit
- coin supérieur gauche
- tirage aléatoire

En métalexicographie, échantillon pprox 1% dict.



## échantillonnage nécessaire...

quantification d'un phénomène sur un nombre restreint d'articles, puis généralisation

#### oui, mais comment?

d'après Bukowska (2010) :

- beaucoup d'énergie consacrée à l'analyse des échantillons
- peu de réflexion accordée aux mécanismes de sélection des échantillons eux-mêmes

### ∃ méthodes +/- pertinentes

e.g.: image, échantillon = 25% pixels

- o coin inférieur gauche
- o coin inférieur droit
- coin supérieur droit
- o coin supérieur gauche
- tirage aléatoire

En métalexicographie, échantillon pprox 1% dict.



## Méthodes d'échantillonnage

### Tranche contiguë : biais importants

- propriétés inhérentes au lexique
- artefacts liés au processus rédactionnel
  - différences interpersonnelles de pratiques entre rédacteurs, changement de direction éditoriale, de type de corpus, etc.
  - "alphabet fatigue" (Osselton, 2007): lettres du milieu de l'alphabet mieux adaptées à l'analyse car adoption d'un modus operandi régulier, entre rodage initial et accélération finale
    - → présupposé discutable (de Schryver, 2005)

## Méthodes d'échantillonnage

### Tranche contiguë : biais importants

- propriétés inhérentes au lexique
- artefacts liés au processus rédactionnel
  - différences interpersonnelles de pratiques entre rédacteurs, changement de direction éditoriale, de type de corpus, etc.
  - "alphabet fatigue" (Osselton, 2007): lettres du milieu de l'alphabet mieux adaptées à l'analyse car adoption d'un modus operandi régulier, entre rodage initial et accélération finale
    - $\rightarrow$  présupposé discutable (de Schryver, 2005)

## Échantillonnage probabiliste

- moins problématique car biais moins systématiques
- mais aucune garantie qu'un échantillon (même de taille raisonnable) soit représentatif

## Méthodes d'échantillonnage

## Tranche contiguë : biais importants

- propriétés inhérentes au lexique
- artefacts liés au processus rédactionnel
  - différences interpersonnelles de pratiques entre rédacteurs, changement de direction éditoriale, de type de corpus, etc.
  - "alphabet fatigue" (Osselton, 2007): lettres du milieu de l'alphabet mieux adaptées à l'analyse car adoption d'un modus operandi régulier, entre rodage initial et accélération finale
    - ightarrow présupposé discutable (de Schryver, 2005)

## Échantillonnage probabiliste

- moins problématique car biais moins systématiques
- mais aucune garantie qu'un échantillon (même de taille raisonnable) soit représentatif

#### Et pourtant...

échantillonnage par tranche contiguë de loin le plus employé par les métalexicographes

## Autres méthodes d'échantillonnage

## Échantillonnage probabiliste stratifié

- découpage du dict. en zones non chevauchantes (les strates)
   e.g. les lettres initiales, les tomes, les parties rédigées par différents éditeurs
- échantillonnage aléatoire respectant certaines proportions :
  - celles du dictionnaire (e.g. POS, marquage, etc.)
  - calculées en corpus (e.g. POS, rangs de fréquence, etc.)

## Autres méthodes d'échantillonnage

## Échantillonnage probabiliste stratifié

- découpage du dict. en zones non chevauchantes (les strates)
   e.g. les lettres initiales, les tomes, les parties rédigées par différents éditeurs
- échantillonnage aléatoire respectant certaines proportions :
  - celles du dictionnaire (e.g. POS, marquage, etc.)
  - calculées en corpus (e.g. POS, rangs de fréquence, etc.)
- plus complexe, pas toujours possible, pas toujours pertinent :
  - proportions d'une caractéristique du dictionnaire souvent inconnues
  - n'améliore pas systématiquement l'échantillonnage probabiliste simple
  - aider/forcer le hasard? construction artificielle/arbitraire d'un échantillon « trop » équilibré ⇒? biais

## Autres méthodes d'échantillonnage

## Échantillonnage probabiliste stratifié

- découpage du dict. en zones non chevauchantes (les strates)
   e.g. les lettres initiales, les tomes, les parties rédigées par différents éditeurs
- échantillonnage aléatoire respectant certaines proportions :
  - celles du dictionnaire (e.g. POS, marquage, etc.)
  - calculées en corpus (e.g. POS, rangs de fréquence, etc.)
- plus complexe, pas toujours possible, pas toujours pertinent :
  - proportions d'une caractéristique du dictionnaire souvent inconnues
  - n'améliore pas systématiquement l'échantillonnage probabiliste simple
  - aider/forcer le hasard? construction artificielle/arbitraire d'un échantillon « trop » équilibré ⇒? biais

## Échantillonnage systématique

sélection d'un observable tous les  $N \to \text{\'e}$ chantillonnage non aléatoire la théorie des probabilités et les statistiques inférentielles ont peu à dire sur la confiance que l'on peut accorder à un échantillonnage non aléatoire (Freeman, 1963) cité par Bukowska (2010)

### À suivre...

### Expériences d'échantillonnage

- génération automatique d'échantillons
- simulation de ce que les métalexicographes seraient susceptibles de faire manuellement
- comparaison des résultats obtenus avec les méthodes d'échantillonnage probabiliste vs. par zone contiguë
- questionnement sur la « fiabilité » des échantillons (et des moyens d'estimer cette fiabilité)

### À suivre...

### Expériences d'échantillonnage

- génération automatique d'échantillons
- simulation de ce que les métalexicographes seraient susceptibles de faire manuellement
- comparaison des résultats obtenus avec les méthodes d'échantillonnage probabiliste vs. par zone contiguë
- questionnement sur la « fiabilité » des échantillons (et des moyens d'estimer cette fiabilité)

#### **Précisions**

- les métalexicographes ne « connaissent » pas leur population
- les métalexicographes constituent et analysent UN échantillon (ou deux)

## À suivre...

### Expériences d'échantillonnage

- génération automatique d'échantillons
- simulation de ce que les métalexicographes seraient susceptibles de faire manuellement
- comparaison des résultats obtenus avec les méthodes d'échantillonnage probabiliste vs. par zone contiguë
- questionnement sur la « fiabilité » des échantillons (et des moyens d'estimer cette fiabilité)

#### **Précisions**

- les métalexicographes ne « connaissent » pas leur population
- les métalexicographes constituent et analysent UN échantillon (ou deux)

#### Disclaimer

- les expériences menées dans cette études ne sont pas celles que je préconise (ne faites pas ça chez vous!)
- je procède comme les métalexicographes sont susceptibles de le faire

# III - EXPÉRIENCES D'ÉCHANTILLONNAGE

# Type d'étude / dictionnaire analysé

- 1 Étude synchronique : Usito
- Étude diachronique : tomes du TLF

## Estimation du marquage dans Usito

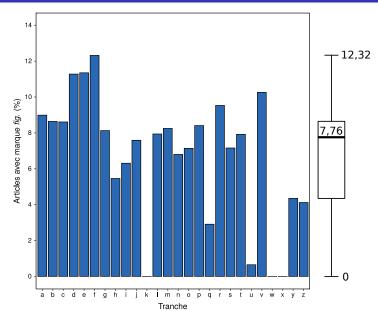
#### Usito

- dictionnaire général, « de langue », normatif, du français québécois
- réalisé par l'Université de Sherbrooke
- nativement numérique, en ligne
- gratuit depuis octobre 2019

## Marques fig. et fam.

- proportion d'articles portant la marque fig. dans Usito
- proportion d'articles portant la marque fam. dans Usito
- $\rightarrow$  phénomènes choisis parmi beaucoup d'autres possibles, mais observables factuels (identifiables automatiquement), présence non anecdotique, répartition a priori sur l'ensemble du dictionnaire

### Corpus et méthode


- ullet restriction de l'étude aux noms ightarrow 31 310 articles concernés
- ullet analyse automatique sur l'ensemble du dictionnaire o calcul % réel
- expériences automatiques d'échantillonnage → simulation de résultats obtenus par analyse manuelle

### Tranche = vedettes commençant par la même lettre initiale

- sélection contiguë + tirage aléatoire d'échantillons de n articles dans une tranche donnée
- quelle tranche choisir? Quelle incidence de ce choix?

| Tranche | Nb articles | % articles |
|---------|-------------|------------|
| а       | 3350        | 10,70      |
| b       | 1909        | 6,10       |
| С       | 3855        | 12,31      |
| d       | 1826        | 5,83       |
| е       | 1004        | 3,21       |
| f       | 1234        | 3,94       |
| g       | 1156        | 3,69       |
| h       | 842         | 2,69       |
| i       | 1061        | 3,39       |
| j       | 290         | 0,93       |
| k       | 165         | 0,53       |
|         | 945         | 3,02       |
| m       | 2084        | 6,66       |

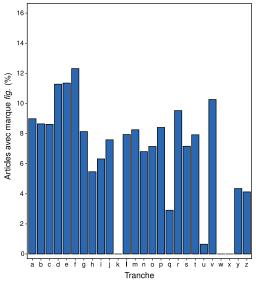
| Tranche | Nb articles | % articles |
|---------|-------------|------------|
| n       | 647         | 2,07       |
| 0       | 700         | 2,24       |
| р       | 3248        | 10,37      |
| q       | 172         | 0,55       |
| r       | 1669        | 5,33       |
| S       | 2305        | 7,36       |
| t       | 1667        | 5,32       |
| u       | 154         | 0,49       |
| V       | 799         | 2,55       |
| w       | 61          | 0,19       |
| х       | 24          | 0,08       |
| у       | 46          | 0,15       |
| Z       | 97          | 0,31       |



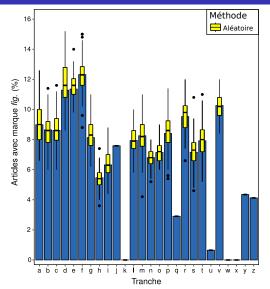
| Tranche | % fig. |
|---------|--------|
| a       | 8,99   |
| b       | 8,64   |
| С       |        |
|         | 8,61   |
| d       | 11,28  |
| е       | 11,35  |
| f       | 12,32  |
| g<br>h  | 8,13   |
|         | 5,46   |
| i       | 6,31   |
| j       | 7,59   |
| k       | 0,00   |
| l       | 7,94   |
| m       | 8,25   |
| n       | 6,80   |
| 0       | 7,14   |
| р       | 8,41   |
| q       | 2,91   |
| r       | 9,53   |
| s       | 7,16   |
| t       | 7,92   |
| u       | 0,65   |
| v       | 10,26  |
| w       | 0,00   |
| x       | 0,00   |
| У       | 4,35   |
| z       | 4,12   |

### Génération automatique des échantillons

#### Pour chaque tranche:

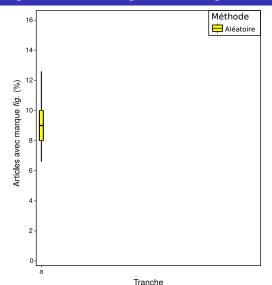

- génération de 100 échantillons de 500 (max.) articles contigus, articles de départ tirés aléatoirement
- génération de 100 échantillons de 500 (max.) articles, tous tirés aléatoirement

#### Pour chaque échantillon :


o calcul du % d'articles marqués

#### Observation des distributions des valeurs obtenues

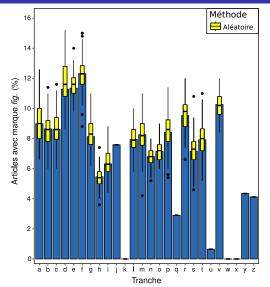
- quelle variabilité entre % échantillons?
- quel écart entre % échantillons et % réel de la tranche?
- quel écart entre % échantillons et % réel du dictionnaire?




% marquage réel par tranche

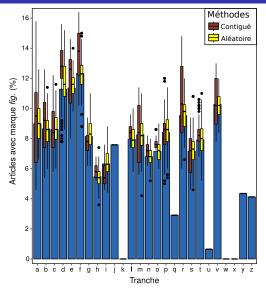


#### distribution des valeurs des échantillons

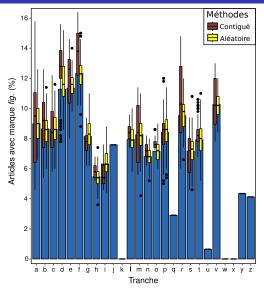

ightarrow 26 tranches (lettres initiales) x 100 échantillons de 500 articles



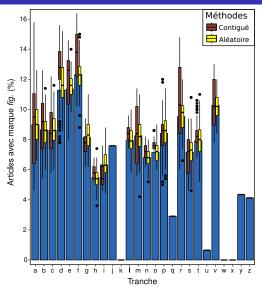
1 boxplot ightarrow 100 échantillons de 500 articles d'une tranche donnée



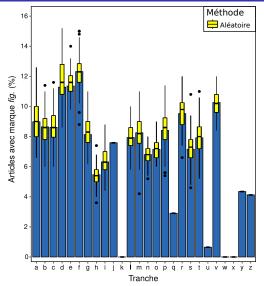

1 boxplot ightarrow 100 échantillons de 500 articles d'une tranche donnée



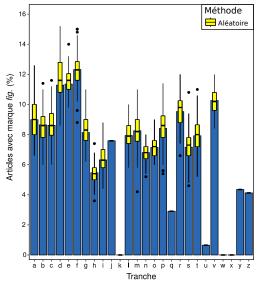

#### distribution des valeurs des échantillons


ightarrow 26 tranches (lettres initiales) x 100 échantillons de 500 articles

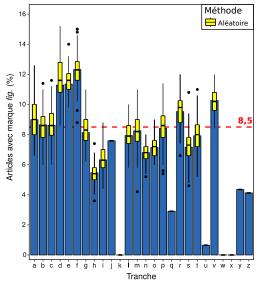



distribution des valeurs des échantillons, par méthode

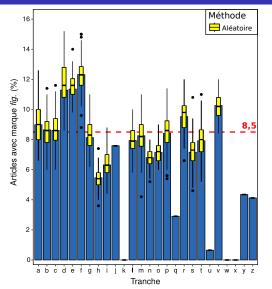



échantillons contigus : plus grande variabilité des distributions

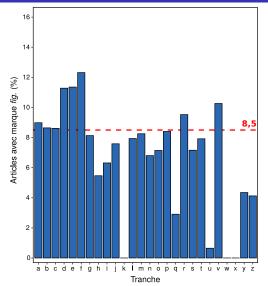



échantillons contigus : distributions moins centrées sur % réel des tranches




très grande variabilité, même pour la (meilleure) méthode aléatoire




variabilité, même dans les "grosses" tranches : <4%  $\rightarrow$  >15%



% réel du marquage sur l'ensemble du dictionnaire = 8,5 %



% réel du marquage sur l'ensemble du dictionnaire  $=8.5\,\%$  pour certaines tranches, aucune distribution ne contient cette valeur

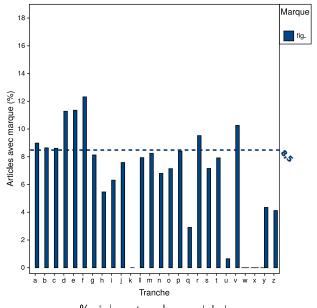


% réel marquage tranches  $b,\ c$  et  $p \approx \%$  dictionnaire

## Échantillonnage: "bonne" tranche

#### Choix d'une "bonne" tranche

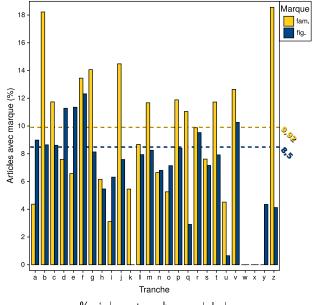
Indépendamment de la technique d'échantillonnage :


- de quelle tranche tirer un échantillon?
- ∃ de bonnes tranches généralement représentatives?
   e.g. tranches b, c et p, les plus représentatives pour l'expérience précédente (marque fig.)?

#### Marque fam. : pourcentage d'articles marqués

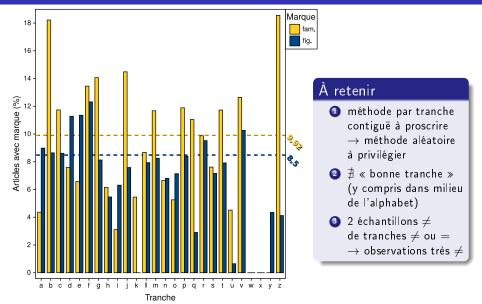
Sur la totalité des 31 310 noms d'Usito :

- 3 106 articles contiennent (au moins) une marque fam.
- soit 9,92%


# Échantillonnage : "bonne" tranche - marques fig. et fam.



% réel par tranche vs. global


Franck Sajous

# Échantillonnage: "bonne" tranche - marques fig. et fam.

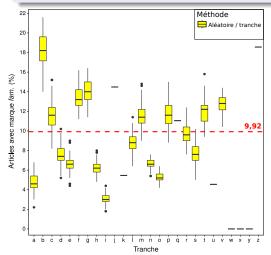


% réel par tranche  $\emph{vs.}$  global

# Échantillonnage: "bonne" tranche - marques fig. et fam.

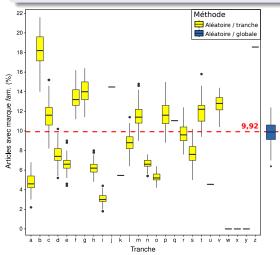


% réel par tranche vs. global


Franck Sajous

#### Comparaison échantillons/tranche vs. échantillons/dict. global

- 100 échantillons précédents (500 articles tirés aléatoirement par tranche)
- 100 échantillons de 500 articles tirés aléatoirement sur tout le dictionnaire

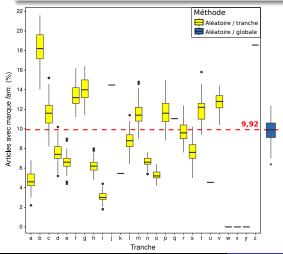

### Comparaison échantillons/tranche vs. échantillons/dict. global

- 100 échantillons précédents (500 articles tirés aléatoirement par tranche)
- 100 échantillons de 500 articles tirés aléatoirement sur tout le dictionnaire



### Comparaison échantillons/tranche vs. échantillons/dict. global

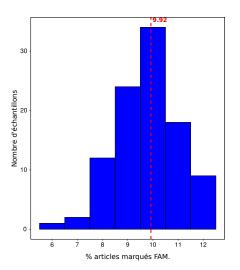
- 100 échantillons précédents (500 articles tirés aléatoirement par tranche)
- 100 échantillons de 500 articles tirés aléatoirement sur tout le dictionnaire




| méthode aléatoire/globale |        |  |  |  |  |
|---------------------------|--------|--|--|--|--|
| min.                      | 6,4 %  |  |  |  |  |
| médiane                   | 9,9 %  |  |  |  |  |
| max.                      | 12,4 % |  |  |  |  |

distribution centrée sur valeur réelle mais dispersée min/max : simple au double

#### Comparaison échantillons/tranche vs. échantillons/dict. global


- 100 échantillons précédents (500 articles tirés aléatoirement par tranche)
- 100 échantillons de 500 articles tirés aléatoirement sur tout le dictionnaire



#### À retenir

- échantillonnage probabiliste préférable à échantillonnage par zone contiguë
- échantillonnage sur tout le dictionnaire préférable à échantillonnage dans une tranche donnée

100 échantillons de 500 articles tirés aléatoirement sur tout le dictionnaire



### « Uncontrolled reliability »

"Most of the samples in current metalexicographic research are judgmental one-stretch samples based on what metalexicographers intuitively consider reliable and representative, usually without having tested this representativeness in any way." (Bukowska, 2010)

#### Estimation de la fiabilité / représentativité

Pour Bukowska (2010), calcul de la marge d'erreur et (donc) de l'intervalle de confiance.

 $\rightarrow$  "il y a telle probabilité (= niveau de confiance, e.g. 95%) que la véritable proportion  $p_r$  soit comprise dans tel intervalle autour de la proportion observée  $p_o$ "

$$p_r \in [p_o - m_e; p_o + m_e]$$
 et  $m_e = k imes$  erreur type  $= k imes \sqrt{rac{p_o(1-p_o)}{n}}$ , avec :

- po : proportion observée dans l'échantillon
- n : taille de l'échantillon
- k : coefficient correspondant au niveau de confiance souhaité → table de la loi normale centrée réduite (e.g. 1,96 pour un niveau de confiance de 95%)

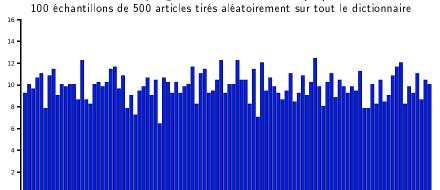
### Expérience précédente : marquage FAM. dans Usito

- 100 échantillons de 500 articles, tirés aléatoirement sur tout le dictionnaire (moins pire des méthodes)
- intervalles au niveau de confiance 95% :

| -  | p observée (%) |                              | marge d'erreur (%) | intervalle de confiance (%) |  |
|----|----------------|------------------------------|--------------------|-----------------------------|--|
| (  | 6,40           | $(p_o \text{ min})$          | 2,15%              | [4,25; 8,55]                |  |
| (  | 9,92           | $(p_o = p_r)$                | 2,62%              | [7,3; 12,54]                |  |
| 12 | 2,40           | ( <i>p</i> <sub>o</sub> max) | 2,89%              | [9,51; 15,29]               |  |

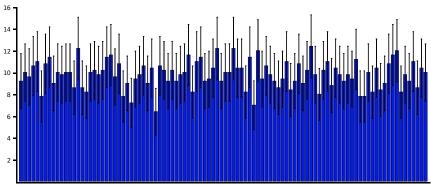
(au même niveau de confiance, une marge d'erreur de 1% (pour  $p_o = 9,92$ ) nécessite un échantillon de 3500 articles)

### Expérience précédente : marquage FAM. dans Usito


- 100 échantillons de 500 articles, tirés aléatoirement sur tout le dictionnaire (moins pire des méthodes)
- intervalles au niveau de confiance 95% :

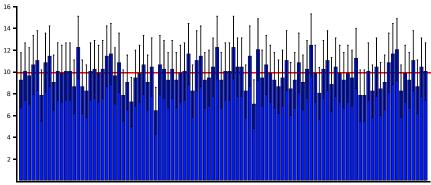
| p obs | ervée (%)                    | marge d'erreur (%) | intervalle de confiance (%) |
|-------|------------------------------|--------------------|-----------------------------|
| 6,40  | $(p_o \text{ min})$          | 2,15%              | [4,25; 8,55]                |
| 9,92  | $(p_o = p_r)$                | 2,62%              | [7,3; 12,54]                |
| 12,40 | ( <i>p</i> <sub>o</sub> max) | 2,89%              | [9,51; 15,29]               |
| 7 ^   |                              | C.                 | 1 1 10/ / 0.00              |

(au même niveau de confiance, une marge d'erreur de 1% (pour  $p_o=9,92$ ) nécessite un échantillon de 3500 articles)

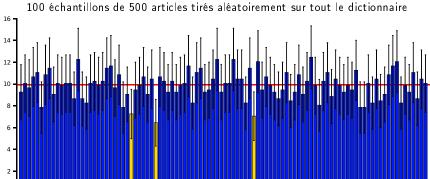

• marge d'erreur satisfaisante? Niveau de confiance satisfaisant?

Marquage FAM. dans *Usito* (%)




### Marquage FAM. dans *Usito* (%)

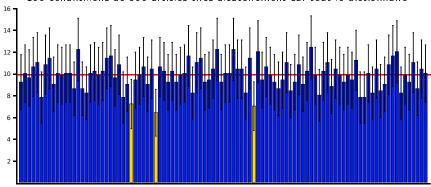
100 échantillons de 500 articles tirés aléatoirement sur tout le dictionnaire




### Marquage FAM. dans *Usito* (%)

100 échantillons de 500 articles tirés aléatoirement sur tout le dictionnaire




### Marquage FAM. dans *Usito* (%)

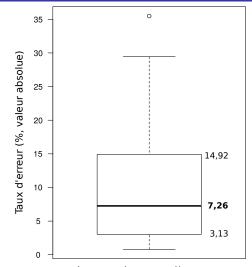


3 échantillons sur 100 pour lesquels la valeur réelle est hors de l'intervalle (au niveau de confiance 95%)

### Marquage FAM. dans *Usito* (%)

100 échantillons de 500 articles tirés aléatoirement sur tout le dictionnaire

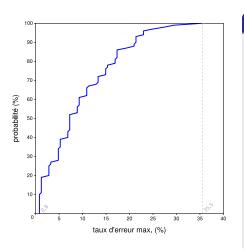



3 échantillons sur 100 pour lesquels la valeur réelle est hors de l'intervalle (au niveau de confiance 95%)

**Problème** (en plus de la taille de l'intervalle) : l'analyste ne sait pas si son (unique) échantillon est malchanceux



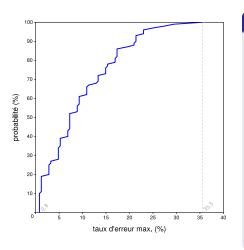
Pour un échantillon :


$$T_e = \frac{|p_o - p_r|}{p_r}$$



Distribution du taux d'erreur pour les 100 échantillons

(tirage aléatoire sur tout le dictionnaire)


Proportion d'échantillons (parmi les 100 générés), d'afficher un taux d'erreur inférieur/supérieur à un seuil donné



#### Un échantillon a :

- 10% de chances d'afficher un taux d'erreur inférieur à 1%
- 19% de chances d'afficher un taux d'erreur inférieur à 2%
- 34% de chances d'afficher un taux d'erreur inférieur à 5%
- 61% de chances d'afficher un taux d'erreur inférieur à 10%
- 87% de chances d'afficher un taux d'erreur inférieur à 20%
- 100% de chances d'afficher un taux d'erreur inférieur à 36%

Proportion d'échantillons (parmi les 100 générés), d'afficher un taux d'erreur inférieur/supérieur à un seuil donné



#### Un échantillon a :

- 90% de chances d'afficher un taux d'erreur supérieur à 1%
- 81% de chances d'afficher un taux d'erreur supérieur à 2%
- 66% de chances d'afficher un taux d'erreur supérieur à 5%
- 39% de chances d'afficher un taux d'erreur supérieur à 10%
- 13% de chances d'afficher un taux d'erreur supérieur à 20%
- 0% de chances d'afficher un taux d'erreur supérieur à 36%

# Analyse par échantillonnage : conclusions (1)

#### À retenir

- échantillonnage probabiliste préférable à échantillonnage par zone contiguë
- échantillonnage sur tout le dictionnaire préférable à échantillonnage dans une tranche donnée
- aucune garantie satisfaisante de la représentativité d'un échantillon

# III - EXPÉRIENCES D'ÉCHANTILLONNAGE

## Type d'étude / dictionnaire analysé

- 1 Étude synchronique : Usito
- 2 Étude diachronique : tomes du TLF

## Projets au long cours : variations des pratiques éditoriales

### Alphabet fatigue (Osselton, 2007)

- avant l'informatique, travail sous "la tyrannie de l'alphabet, de A à Z"
- traitement plus fouillé au début qu'à la fin
- dictionnaires anglais actuels (1995-2004), mot médian = litteral, lotto, Lycra, machinable, main, market
- dictionnaires du XVII<sup>e</sup> s. : entre les tranches hu- et lo-
- explication du déséquilibre : pression temporelle et financière des maisons d'édition et des imprimeurs (→ coupe dans la nomenclature, longueur des articles), mais également nombreux autres facteurs explicatifs!
- déséquilibres inverses également observés

### Forensic dictionary analysis (Coleman & Ogilvie, 2009)

étude de faits dictionnairiques  $\rightarrow$  indices (et conséquences) du processus de conception

(qui contredisent parfois le paratexte et autres communications des éditeurs)

### Le Trésor de la langue française

#### Le projet / le produit

- dictionnaire institutionnel, général, monolingue, « de langue »
- conception fondée sur l'exploitation d'un corpus essentiellement littéraire (surtout au début)
- 3 16 tomes (consultables à la BUC)
- publication papier : 1971-1994 (publication/vente de chaque tome publié au fur et à mesure)
- onumérisation, mise en ligne en 2002



#### Nombreuses évolutions

Au cours du projet, nombreux changements (e.g. de direction)

→ conséquences réelles ou fantasmées sur les tomes successifs

### Le Trésor de la langue française : évolution au fil des tomes

### Changements effectifs (Radermacher, 2004)

Changements au niveau de la typographie, de la microstructure, du corpus, du traitement...

- tome III: disparition de la rubrique STYL[istique] (connotation possibles d'un mot)
- lettre F (tome VIII): élém[ents] préf[ixaux]/suff[ixaux] → élém[ents] de compos[ition]
   lettre G (tome IX): apparition de élém[ent] form[ant]
   (catégories non documentées)
- dès premiers tomes, réduction nb entrées principales de la nomenclature : dérivés → sous-entrées (= « entrées-cachées ») dans les rubriques DÉR[ivés] et REM[arque]
- typographie fluctuante au fil des tomes : taille de caractères « généreuse » et constante dans tome I, réservée à certaines entrées seulement dans tome XVI
- lettres A à C : nomenclature extraite exclusivement du corpus littéraire puis ajout presse, documents techniques, autres dictionnaires

### Le Trésor de la langue française : évolution au fil des tomes

### Changements: les exemples (Radermacher, 2004, 2005)

- P. Imbs annonce dès le « Au lecteur » du tome II
   « une diminution importante du nombre d'exemples »
- des linguistes constatent (et déplorent) leur place décroissante
- Radermacher étudie, dans les tomes I et XVI :
  - leur provenance (sources littéraires ou autres, auteurs +/- cités)
  - la diversité des sources (nb d'exemples / nb d'œuvres ou d'auteurs)
  - leur répartition chronologique
  - la longueur (nb mots) et le nombre d'exemples par article
- à travers l'analyse de deux échantillons (issus du tome I et du tome XVI), elle montre :
  - que la longueur des exemples diminue effectivement
  - que la diminution du nombre d'exemples par article est un mythe

### Le Trésor de la langue française : évolution au fil des tomes

### Changements: les exemples (Radermacher, 2004, 2005)

- P. Imbs annonce dès le « Au lecteur » du tome II
   « une diminution importante du nombre d'exemples »
- des linguistes constatent (et déplorent) leur place décroissante
- Radermacher étudie, dans les tomes I et XVI :
  - leur provenance (sources littéraires ou autres, auteurs +/- cités)
  - la diversité des sources (nb d'exemples / nb d'œuvres ou d'auteurs)
  - leur répartition chronologique
  - la longueur (nb mots) et le nombre d'exemples par article
- à travers l'analyse de deux échantillons (issus du tome I et du tome XVI), elle montre :
  - que la longueur des exemples diminue effectivement
  - que la diminution du nombre d'exemples par article est un mythe

#### Question

Peut-on lui faire confiance?

# Échantillonnage et conclusions de Radermacher

#### Démarche : à partir du TLFi...

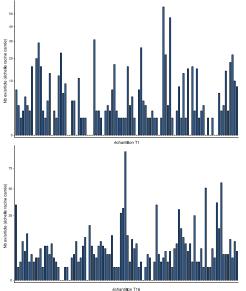
- reproduire l'expérience sur les échantillons de Radermacher
- reproduire automatiquement l'expérience sur l'intégralité des tomes I et XVI pour tester la « fiabilité » de l'échantillonnage et des conclusions

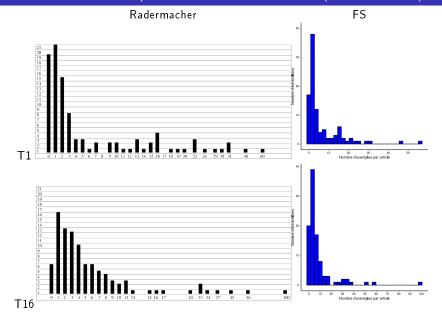
### Reproductibilité : constitution des échantillons

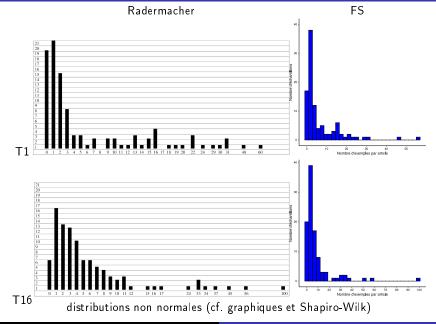
- Pour l'étude des sources :
  - tome I : « 500 exemples de la lettre A »
  - tome XVI : « 550 exemples de la lettre U »
  - → zone contiguë (quel point de départ?) ou tirage aléatoire? pourquoi 2 échantillons de tailles différentes?
- Pour les exemples, 2 échantillons de 100 articles :
  - T.I: « le hasard a fait le choix de » la tranche abatture abolir
  - T. XVI : la tranche U, u, lettre unitarisme
  - → tranches contiguës, 100 exemples chacune, préf., suff. et élém. form./de compos. exclus, cf. Radermacher (2004), renvois exclus (bien sûr)
    Pourquoi début de lettre (T.XVI: U) vs. tirage aléatoire de l'article initial (T.I: abatture)?

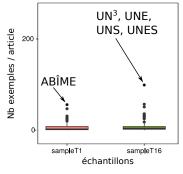
## Échantillonnage et conclusions de Radermacher

### Reproductibilité : comptage



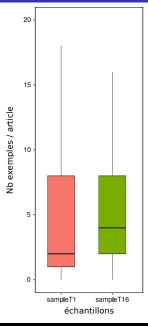


| Non    | Nombre total d'exemples, par tranche |             |     |  |  |  |  |
|--------|--------------------------------------|-------------|-----|--|--|--|--|
| Tome   | Tranche                              | Radermacher | FS  |  |  |  |  |
| T. I   | abatture – abolir                    | 684         | 639 |  |  |  |  |
| T. XVI | U, u – unitarisme                    | 795         | 846 |  |  |  |  |


#### Conclusions de Radermacher


- échantillon T.I: environ 7 citations par entrée
- échantillon T. XVI : environ 8 citations par entrée
- → l'idée selon laquelle le nombre d'exemples par article aurait été la première victime des réductions effectuées à partir du tome III n'est qu'un mythe

Diagrammes en barre (1 barre ightarrow un article, n exemples)










| Tome      | Min | Q1 | Median | Mean | Q3 | Max | $\sigma$ |
|-----------|-----|----|--------|------|----|-----|----------|
| sampleT1  | 0   | 1  | 2      | 6.39 | 8  | 56  | 9.70     |
| sampleT16 | 0   | 2  | 4      | 8.46 | 8  | 99  | 13.73    |

Pour les valeurs moyennes : rapport sample T16 / sample T1 = 1,32



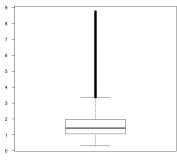
« Recadrage » (mêmes distributions, échelle non transformée, valeurs extrêmes prises en compte)

| Tome      | Min | Q1 | Median | Mean | Q3 | Max | $\sigma$ |
|-----------|-----|----|--------|------|----|-----|----------|
| sampleT1  | 0   | 1  | 2      | 6.39 | 8  | 56  | 9.70     |
| sampleT16 | 0   | 2  | 4      | 8.46 | 8  | 99  | 13.73    |

Pour les valeurs moyennes : rapport sampleT16 / sampleT1 = 1,32

## Échantillonnage : quelle probabilité d'observer quoi?

#### Questions


- Quelles chances a-t-on de prédire une diminution/augmentation du nombre moyen d'exemples par article T. I → T. XVI?
- De quel ordre de grandeur?

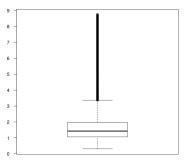
### (paires d')échantillons

- ullet T. I: 1615 articles o 1516 tranches de 100 articles
- ullet T. XVI : 3 667 articles o 3 568 tranches de 100 articles
- 5 409 088 paires d'échantillons possibles

Pour chaque paire :

- comparaison des nombres moyens d'exemples par article (<,=,>)
- calcul du ratio T. XVI / T. I

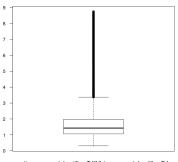



ratio moyenne échantillon T XVI / moyenne échantillon T I

|      | _    | Median |      |      | 1    |
|------|------|--------|------|------|------|
| 0.31 | 1.06 | 1.43   | 1.62 | 1.99 | 8.75 |

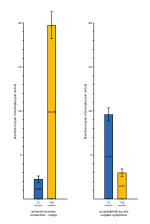


ratio moyenne échantillon T XVI / moyenne échantillon T I


| - 1 |      | _    | Median |      | _    |      |
|-----|------|------|--------|------|------|------|
|     | 0.31 | 1.06 | 1.43   | 1.62 | 1.99 | 8.75 |



ratio moyenne échantillon T XVI / moyenne échantillon T I


|      |      | Median | Mean | Q3   | Max  |
|------|------|--------|------|------|------|
| 0.31 | 1.06 | 1.43   | 1.62 | 1.99 | 8.75 |

| échantillon <sup>-</sup> | ГΙ        | échantillon T                         |           |       |
|--------------------------|-----------|---------------------------------------|-----------|-------|
| Tranche                  | Nb ex/art | Tranche                               | Nb ex/art | Ratio |
| acceptabilité-accord     | 9.64      | vulgate-xylophone<br>vulgivague-xyste | 2.97      | 0.31  |
| achevoir-acomas          | 2.26      | vivisection-volige                    | 19.78     | 8.75  |



ratio moyenne échantillon T XVI / moyenne échantillon T I

| Min  | Q1   | Median | Mean | Q3   | Max  |
|------|------|--------|------|------|------|
| 0.31 | 1.06 | 1.43   | 1.62 | 1.99 | 8.75 |



| échantillon <sup>*</sup> | ТΙ        | échantillon T                         |           |       |
|--------------------------|-----------|---------------------------------------|-----------|-------|
| Tranche                  | Nb ex/art | Tranche                               | Nb ex/art | Ratio |
| acceptabilité-accord     | 9.64      | vulgate-xylophone<br>vulgivague-xyste | 2.97      | 0.31  |
| achevoir-acomas          | 2.26      | vivisection-volige                    | 19.78     | 8.75  |

### Ratio entre nb moyen d'exemples par article

| TXVI/TI | Nombre    | %     |
|---------|-----------|-------|
| < 1     | 1 147 347 | 21,21 |
| = 1     | 4 638     | 0,09  |
| > 1     | 4 257 103 | 78,70 |

# Ratio nb moyen d'exemples par article T. XVI / T. I

### Ratio entre nb moyen d'exemples par article

| TXVI/TI | Nombre    | %     |
|---------|-----------|-------|
| < 1     | 1 147 347 | 21,21 |
| = 1     |           | 0,09  |
| > 1     | 4 257 103 | 78,70 |

### ...avec différence significative (Wilcoxon-Mann-Whitney)

| TXVI/TI | Nombre  | %    |
|---------|---------|------|
| < 1     | 56 068  |      |
| > 1     | 514 248 | 9,50 |

# Ratio nb moyen d'exemples par article T. XVI / T. I

### Ratio entre nb moyen d'exemples par article

| TXVI/TI | Nombre    | %     |                                                  |
|---------|-----------|-------|--------------------------------------------------|
| < 1     | 1 147 347 | 21,21 |                                                  |
| = 1     | 4 638     | 0,09  |                                                  |
| > 1     | 4 257 103 | 78,70 | $\leftarrow$ abatture-abolir vs. U, u-unitarisme |

### ... avec différence significative (Wilcoxon-Mann-Whitney)

| TXVI/TI | Nombre  | %    |                                                                        |
|---------|---------|------|------------------------------------------------------------------------|
| < 1     | 56 068  | 1,04 | $\leftarrow$ acceptabilité-accord vs. vulgate-xylophone (p < 1.26e-05) |
| > 1     | 514 248 | 9,50 | ← achevoir-acomas vs. vivisection-volige (p = .004925)                 |

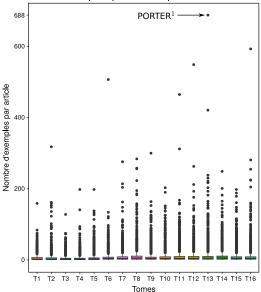
# Ratio nb moyen d'exemples par article T. XVI / T. I

### Ratio entre nb moyen d'exemples par article

| TXVI/TI | Nombre    | %     |              |
|---------|-----------|-------|--------------|
| < 1     | 1 147 347 | 21,21 |              |
| = 1     | 4 638     | 0,09  |              |
| > 1     | 4 257 103 | 78,70 | $\leftarrow$ |

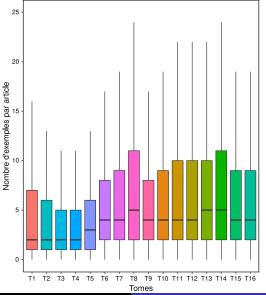
 $\leftarrow$  abatture-abolir vs. U, u-unitarisme

### ...avec différence significative (Wilcoxon-Mann-Whitney)

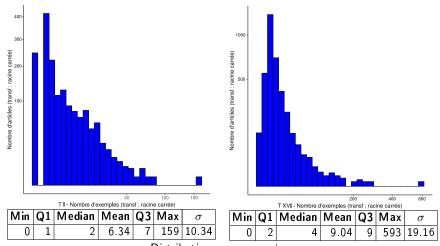

| T X VI / T I | Nombre  | %    |                                                                           |
|--------------|---------|------|---------------------------------------------------------------------------|
| < 1          | 56 068  | 1,04 | $\leftarrow$ acceptabilité-accord vs. vulgate-xylophone (p $< 1.26$ e-05) |
| > 1          | 514 248 | 9,50 | ← achevoir-acomas vs. vivisection-volige (p = .004925)                    |

#### Mais en vrai...

il y moins d'exemples par article dans T. XVI que dans T. I, ou pas?


## God only knows: T. $I \rightarrow T. XVI$

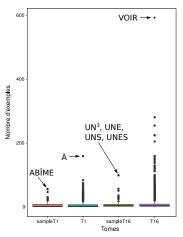
Évolution du nombre d'exemples par article pour les 16 tomes




## God only knows: T. I $\rightarrow$ T. XVI

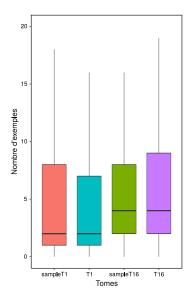
Évolution du nombre d'exemples par article pour les 16 tomes (recadrage)




# God only knows: distributions tout T. I et tout T. XVI



Distributions non normales.


Nb ex/art T. XVI > T. I (ratio moyennes : 1,43) différence significative (Wilcoxon p-value < 2.2e-16)

## God only knows: échantillons T. l et T. XVI vs. totalité



| Tome      | Min | Q1 | Median | Mean | Q3 | Max | $\sigma$ |
|-----------|-----|----|--------|------|----|-----|----------|
| T1        | 0   | 1  | 2      | 6.34 | 7  | 159 | 10.34    |
| sampleT1  | 0   | 1  | 2      | 6.39 | 8  | 56  | 9.70     |
| T16       | 0   | 2  | 4      | 9.04 | 9  | 593 | 19.16    |
| sampleT16 | 0   | 2  | 4      | 8.46 | 8  | 99  | 13.73    |

# God only knows: échantillons T. l et T. XVI vs. totalité



| Tome      | Min | Q1 | Median | Mean | Q3 | Max | $\sigma$ |
|-----------|-----|----|--------|------|----|-----|----------|
| T1        | 0   | 1  | 2      | 6.34 | 7  | 159 | 10.34    |
| sampleT1  | 0   | 1  | 2      | 6.39 | 8  | 56  | 9.70     |
| T16       | 0   | 2  | 4      | 9.04 | 9  | 593 | 19.16    |
| sampleT16 | 0   | 2  | 4      | 8.46 | 8  | 99  | 13.73    |

# Expériences de Radermacher (2004, 2005) : conclusions

#### Finalement...

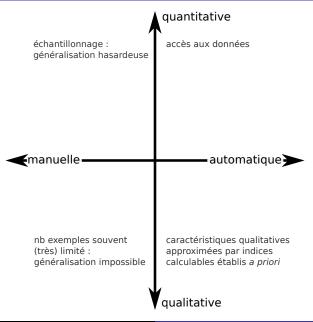
- Radermacher avait raison: pas moins d'exemples par article dans T. XVI que dans T. I
- avec sa méthode, elle avait 21% de chances de conclure l'inverse
- elle n'affirme pas qu'il y a plus d'exemples dans T. XVI (ce qui est sage, mais dommage)
- en observant sa distribution/les articles, elle fournissait une explication valide: peu d'articles avec énormément d'exemples dans T. XVI, mais beaucoup moins d'articles sans exemple que dans T. I

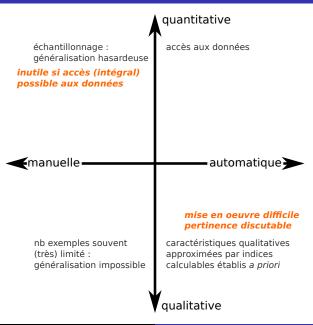
# Expériences de Radermacher (2004, 2005) : conclusions

#### Finalement...

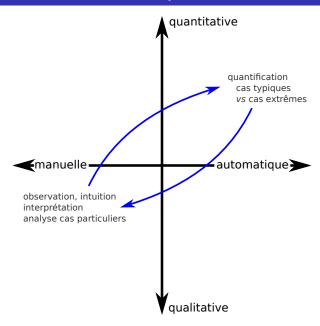
- Radermacher avait raison: pas moins d'exemples par article dans T. XVI que dans T. I
- avec sa méthode, elle avait 21% de chances de conclure l'inverse
- elle n'affirme pas qu'il y a plus d'exemples dans T. XVI (ce qui est sage, mais dommage)
- en observant sa distribution/les articles, elle fournissait une explication valide: peu d'articles avec énormément d'exemples dans T. XVI, mais beaucoup moins d'articles sans exemple que dans T. I
- selon les échantillons, possibilité d'estimer qu'il y a :
  - 3 fois moins d'exemples dans T. XVI que dans T. I
  - (presque) 9 fois plus d'exemples dans T. XVI que dans T. I

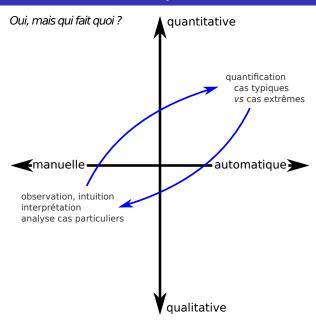
# Expériences de Radermacher (2004, 2005) : conclusions


#### Finalement...

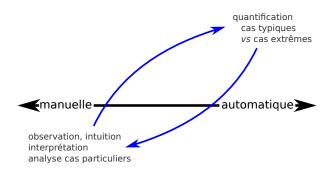

- Radermacher avait raison: pas moins d'exemples par article dans T. XVI que dans T. I
- avec sa méthode, elle avait 21% de chances de conclure l'inverse
- elle n'affirme pas qu'il y a plus d'exemples dans T. XVI (ce qui est sage, mais dommage)
- en observant sa distribution/les articles, elle fournissait une explication valide: peu d'articles avec énormément d'exemples dans T. XVI, mais beaucoup moins d'articles sans exemple que dans T. I
- selon les échantillons, possibilité d'estimer qu'il y a :
  - 3 fois moins d'exemples dans T. XVI que dans T. I
  - (presque) 9 fois plus d'exemples dans T. XVI que dans T. I
- en testant la significativité des différences :
  - ullet seulement 1% de chances d'estimer que nb ex T. XVI < nb ex. T. I
  - 9,5% (seulement) de montrer la supériorité du nb d'ex dans T. XVI

# Conclusions : échantillonnage

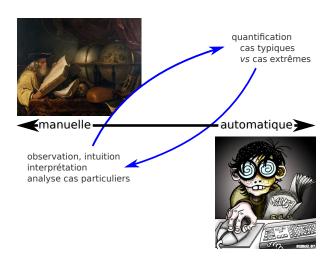

### Échantillonnage


- échantillonnage probabiliste préférable à échantillonnage par zone contiguë
- échantillonnage sur tout le dictionnaire préférable à échantillonnage dans une tranche donnée
- aucune garantie satisfaisante de la représentativité d'un échantillon
- études quantitatives sur l'intégralité du dictionnaire à privilégier! (i.e. pas d'échantillonnage du tout)
- $oldsymbol{0} 
  ightarrow ext{mise}$  en œuvre automatique (moyennant d'éventuels problèmes de droits)
- mieux : coupler études quantitatives automatiques et études qualitatives manuelles

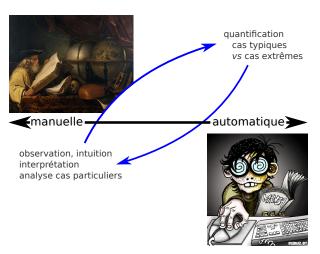





quantitative accès aux données échantillonnage: manuelle automatique nb exemples souvent (très) limité: généralisation impossible qualitative







Oui, mais qui fait quoi ?



Oui, mais qui fait quoi?



Oui, mais qui fait quoi?



collaborations souhaitables (en attendant une relève polyvalente...)

### Références l

- Béjoint, H. (2000). *Modern Lexicography: An Introduction*. Oxford: Oxford University Press.
- Berg, D., Gönnet, G., & Tompa, F. (1988). The New Oxford English Dictionary Project at the University of Waterloo. *Technical Report OED-88-01*, Centre for the New Oxford English Dictionary, University of Waterloo.
- Bukowska, A. A. (2010). Sampling techniques in metalexicographic research. In A. Dykstra & T. Schoonheim (Eds.), *Proceedings of the 14th EURALEX International Congress* (pp. 1258–1269). Leeuwarden/Ljouwert, The Netherlands.
- Coleman, J. & Ogilvie, S. (2009). Forensic Dictionary Analysis: Principles and Practice. *International Journal of Lexicography*, 22(1), 1–22.

#### Références II

- Corbin, P. (1990). Le monde étrange des dictionnaires (7). Logique linguistique et logique botanique : problèmes posés par la définition d'une classe de mots dérivés français. *Cahiers de lexicologie*, 57-59, 75-108.
- Daxenberger, J. & Gurevych, I. (2012). A Corpus-Based Study of Edit Categories in Featured and Non-Featured Wikipedia Articles. In *Proceedings of COLING 2012* (pp. 711–726). Mumbai, India.
- de Schryver, G.-M. (2005). Concurrent Over- and Under-treatment in Dictionaries The Woordeboek van die Afrikaanse Taal as a Case in Point. *International Journal of Lexicography*, 18(1), 47–75.
- de Schryver, G.-M. (2022). Metalexicography: an existential crisis. In *Proceedings of the 20th EURALEX International Congress* (pp. 196–206). Mannheim, Germany.

#### Références III

- Elchacar, M. (2019). Comparaison du traitement lexicographique des appellations des identités de genre non traditionnelles dans les dictionnaires professionnels et profanes. Études de linguistique appliquée, 194(2), 177–191.
- Freeman, H. (1963). *Introduction to statistical inference*. Rearing, MA: Addison-Wesley Publishing Company.
- Gao, Y. (2012). Online English Dictionaries: Friend or Foe. In *Proceedings of the 15th EURALEX International Congress* (pp. 422–433). Oslo, Norway.
- Hanks, P. (2012). Corpus evidence and electronic lexicography. In S.
   Granger & M. Paquot (Eds.), *Electronic Lexicography* (pp. 57–82).
   Oxford: Oxford University Press.
- Hartmann, R. R. K. (2001). *Teaching and Researching Lexicography*. London: Routledge.

### Références IV

- Josselin-Leray, A. (2010). Affiner la description des termes dans les dictionnaires généraux : l'apport d'un corpus de vulgarisation. *Lexis*, 4, 65–104.
- Kilgarriff, A. (2005). If dictionaries are free, who will buy them? Kernerman Dictionary News, 13, 17–19.
- Kittur, A. & Kraut, R. E. (2008). Harnessing the Wisdom of Crowds in Wikipedia: Quality through Coordination. In *Proceedings of the 2008 ACM Conference on Computer Supported Cooperative Work*, CSCW '08 (pp. 37–46). New York, NY, USA: Association for Computing Machinery.
- Lew, R. (2014). User-generated content (UGC) in online English dictionaries. *OPAL*, 4, 8–26.
- Martinez, C. (2013). La comparaison de dictionnaires comme méthode d'investigation lexicographique. *Lexique*, 21, 193–220.

### Références V

- Meyer, C. M. (2013). Wiktionary: The Metalexicographic and the Natural Language Processing Perspective. PhD thesis, Technische Universität Darmstadt.
- Nagao, M., Tsujii, J., Ueda, Y., & Takiyama, M. (1980). An attempt to computerized dictionary data bases. In *Proceedings of COLING* 1980 (pp. 534–542). Tokyo, Japan.
- Nesi, H. (2008). Dictionaries in electronic form. In A. P. Cowie (Ed.), The Oxford History of English Lexicography (pp. 458–478). Oxford: Oxford University Press.
- Osselton, N. E. (2007). Alphabet Fatigue and Compiling Consistency in Early English Dictionaries. In J. Considine & G. lamartino (Eds.), Words and Dictionaries from the British Isles in Historical Perspective (pp. 81–90). Newcastle: Cambridge Scholars Publishing.

### Références VI

- Radermacher, R. (2004). Le Trésor de la Langue Française. Une étude historique et lexicographique. PhD thesis, Université Marc Bloch, Strasbourg.
- Radermacher, R. (2005). Les citations dans le *Trésor de la langue française*. In M. Heinz (Ed.), *L'exemple lexicographique dans les dictionnaires français contemporains*, volume 128 of *Lexicographica Series Maior* (pp. 215–229). Berlin, Boston: De Gruyter.
- Rundell, M. (2014). Macmillan English Dictionary: The End of Print? Slovenščina 2.0, 2(2), 1–14.
- Rundell, M. (2017). Dictionaries and crowdsourcing, wikis, and user-generated content. In P. Hanks & G.-M. de Schryver (Eds.), International Handbook of Modern Lexis and Lexicography. Berlin, Heidelberg: Springer.

### Références VII

- Rundell, M. & Kilgarriff, A. (2011). Automating the creation of dictionaries: Where will it all end? In F. Meunier, S. De Cock, G. Gilquin, & M. Paquot (Eds.), A Taste for Corpora. In honour of Sylviane Granger (pp. 257–282). John Benjamins.
- Rundell, M. & Stock, P. (1992). The corpus revolution. *English Today*, 30, 9–14.
- Sajous, F. (2023). Quantité et qualité dans le Wiktionnaire : de la diversité... à la rigueur? *Linx*, 86.
- Sajous, F. & Humbley, J. (2022). Mesures d'isolement sanitaire dans Wiktionnaire et Wikipédia : néologie et lexicographie ou néonymie et terminographie? *Estudios Románicos*, 31, 175–201.
- Sajous, F. & Josselin-Leray, A. (2022). Issues in Collaborative and Crowdsourced Lexicography. In H. Jackson (Ed.), *The Bloomsbury Handbook of Lexicography* (pp. 343–358). London: Bloomsbury Publishing.

### Références VIII

- Sajous, F., Josselin-Leray, A., & Hathout, N. (2018). Définir la néologie terminologique dans les dictionnaires généraux : le domaine de l'informatique analysé par « les foules » et par les professionnels... de la lexicographie. In 4ème Congrès international de néologie des langues romanes (CINEO 2018) Lyon, France.
- Stvilia, B., Twidale, M. B., Smith, L. C., & Gasser, L. (2005).

  Assessing information quality of a community-based encyclopedia.

  In *Proceedings of the 2005 International Conference on Information Quality (ICIQ 2005)* (pp. 442–454). Cambridge, MA.
- Trap-Jensen, L. (2018). Lexicography between NLP and Linguistics: Aspects of Theory and Practice. In *Proceedings of the 18th EURALEX International Congress* (pp. 25–37). Ljubljana.
- Vincent, N. (2022). Faut-il adapter les dictionnaires à l'air du temps? Proposition d'un traitement polyphonique du mot woke. Regards linguistiques sur des mots polémiques, Circula, 15, 122–145.

### Références IX

- Wilkinson, D. M. & Huberman, B. A. (2007). Assessing the value of cooperation in Wikipedia. *First Monday*, 12(4).
- Wolfer, S. & Müller-Spitzer, C. (2016). How Many People Constitute a Crowd and What Do They Do? Quantitative Analyses of Revisions in the English and German Wiktionary Editions. *Lexicos*, 26.